DOI QR코드

DOI QR Code

Identification of Sorption Characteristics of Cesium for the Improved Coal Mine Drainage Treated Sludge (CMDS) by the Addition of Na and S

석탄광산배수처리슬러지에 Na와 S를 첨가하여 개량한 흡착제의 세슘 흡착 특성 규명

  • Soyoung Jeon (Major of Earth and Environmental Sciences, Division of Earth Environmental System Science, Pukyong National University) ;
  • Danu Kim (Major of Earth and Environmental Sciences, Division of Earth Environmental System Science, Pukyong National University) ;
  • Jeonghyeon Byeon (Major of Environmental Geosciences, Division of Earth Environmental System Science, Pukyong National University) ;
  • Daehyun Shin (Major of Environmental Geosciences, Division of Earth Environmental System Science, Pukyong National University) ;
  • Minjune Yang (Major of Environmental Geosciences, Division of Earth Environmental System Science, Pukyong National University) ;
  • Minhee Lee (Major of Environmental Geosciences, Division of Earth Environmental System Science, Pukyong National University)
  • 전소영 (부경대학교 지구환경시스템과학부 지구환경과학전공) ;
  • 김단우 (부경대학교 지구환경시스템과학부 지구환경과학전공) ;
  • 변정현 (부경대학교 지구환경시스템과학부 환경지질과학전공) ;
  • 신대현 (부경대학교 지구환경시스템과학부 환경지질과학전공) ;
  • 양민준 (부경대학교 지구환경시스템과학부 환경지질과학전공) ;
  • 이민희 (부경대학교 지구환경시스템과학부 환경지질과학전공)
  • Received : 2023.02.17
  • Accepted : 2023.03.22
  • Published : 2023.04.28

Abstract

Most of previous cesium (Cs) sorbents have limitations on the treatment in the large-scale water system having low Cs concentration and high ion strength. In this study, the new Cs sorbent that is eco-friendly and has a high Cs removal efficiency was developed by improving the coal mine drainage treated sludge (hereafter 'CMDS') with the addition of Na and S. The sludge produced through the treatment process for the mine drainage originating from the abandoned coal mine was used as the primary material for developing the new Cs sorbent because of its high Ca and Fe contents. The CMDS was improved by adding Na and S during the heat treatment process (hereafter 'Na-S-CMDS' for the developed sorbent in this study). Laboratory experiments and the sorption model studies were performed to evaluate the Cs sorption capacity and to understand the Cs sorption mechanisms of the Na-S-CMDS. The physicochemical and mineralogical properties of the Na-S-CMDS were also investigated through various analyses, such as XRF, XRD, SEM/EDS, XPS, etc. From results of batch sorption experiments, the Na-S-CMDS showed the fast sorption rate (in equilibrium within few hours) and the very high Cs removal efficiency (> 90.0%) even at the low Cs concentration in solution (< 0.5 mg/L). The experimental results were well fitted to the Langmuir isotherm model, suggesting the mostly monolayer coverage sorption of the Cs on the Na-S-CMDS. The Cs sorption kinetic model studies supported that the Cs sorption tendency of the Na-S-CMDS was similar to the pseudo-second-order model curve and more complicated chemical sorption process could occur rather than the simple physical adsorption. Results of XRF and XRD analyses for the Na-S-CMDS after the Cs sorption showed that the Na content clearly decreased in the Na-S-CMDS and the erdite (NaFeS2·2(H2O)) was disappeared, suggesting that the active ion exchange between Na+ and Cs+ occurred on the Na-S-CMDS during the Cs sorption process. From results of the XPS analysis, the strong interaction between Cs and S in Na-S-CMDS was investigated and the high Cs sorption capacity was resulted from the binding between Cs and S (or S-complex). Results from this study supported that the Na-S-CMDS has an outstanding potential to remove the Cs from radioactive contaminated water systems such as seawater and groundwater, which have high ion strength but low Cs concentration.

수계 내 세슘(cesium: Cs)을 제거하기 위하여 개발된 대부분의 기존 Cs 흡착제들은 원재료 값이 고가라는 단점과, 해수와 같이 높은 이온 강도와 낮은 Cs 농도를 가지는 대규모의 오염수를 실질적으로 정화하는데 한계를 가지고 있었다. 본 연구에서는 석탄광산배수를 처리하는 과정에서 생성되는 슬러지(CMDS)에 Na와 S를 첨가하여 친환경적이고 높은 Cs 제거 효율을 가지는 Cs 흡착제를 개발하였다. Fe 및 Ca 함량이 풍부한 CMDS를 1차 소재로 사용하였고, 열처리 과정으로 Na와 S를 첨가하여 새로운 Cs 흡착제를 제조하였다(이하 본 연구에서 개발한 흡착제는 Na-S-CMDS라 명명함). Na-S-CMDS의 Cs 흡착능 및 흡착 기작을 평가하기 위해 실험실 규모의 실험과 흡착 동역학 및 등온 모델링 연구를 수행하였으며, XRF, XRD, SEM/EDS, XPS 등의 분석을 통해 Na-S-CMDS의 물리화학적, 광물학적 특성을 조사함으로써 Cs 흡착 기작을 규명하였다. 흡착 배치 실험 결과, Cs은 빠르게 Na-S-CMDS에 흡착되어 1시간 내 평형에 도달하였으며, 낮은 Cs 농도(0.5 mg/L) 조건에서도 높은 Cs 제거 효율(> 90.0%)을 보였다. 흡착 등온 모델링 결과, 단일 흡착을 가정하는 Langmuir 흡착 등온 모델에 대응되는 경향을 보였으며, 흡착 동역학 모델링 결과 흡착 경향이 유사 2차 속도(pseudo second order kinetic) 모델과 일치하는 경향을 보였고, 이러한 결과는 단순한 물리적 흡착보다 이온 교환과 같은 화학적 흡착이 우세함을 의미한다. 고농도의 Cs 용액으로 반응시킨 Na-S-CMDS의 XRF/XRD 분석 결과, Na-S-CMDS 내 Na 함량은 감소하고 흡착 전 존재하던 erdite (NaFeS2·2(H2O))가 관찰되지 않는 것을 통해, Na+과 Cs+ 사이에서 활발한 이온 교환 반응이 진행되었음을 알 수 있었다. XPS 분석 결과, Na-S-CMDS에서 Cs와 S 사이의 강한 결합 작용이 관찰되었으며, 이러한 Cs와 S(또는 S-복합체)내 결합에너지 감소도 Na-S-CMDS의 Cs 흡착능을 증가시키는 요인으로 판단되었다. 본 연구를 통해 기존에 폐기물로 처리되었던 석탄광산배수슬러지를 개량하여 제조한 Na-S-CMDS는 기존의 Cs 흡착제보다 제조 비용이 저렴하고, 해수 및 지하수와 같이 이온 강도는 높지만 Cs 농도가 낮은 대규모 오염 수계에서도 Cs 흡착능이 높게 유지되어, 현장에서 효과적인 Cs 흡착제로 사용할 수 있을 것으로 기대한다.

Keywords

Acknowledgement

이 논문은 2020년도 한국연구재단 기본연구자지원사업(NRF-2020R1F1A1072122)과 2022년도 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터(2021R1A6C101A415)의 지원을 받아 연구되었음. 본 연구를 심사해주신 익명의 심사위원들께 감사드린다.

References

  1. Alamudy, H. A. and Cho, K. (2018) Selective adsorption of cesium from an aqueous solution by a montmorillonite-prussian blue hybrid. Chem. Eng. J., v.349, p.595-602. doi: 10.1016/j.cej.2018.05.137
  2. Alby, D., Charnay, C., Heran, M., Prelot, B. and Zajac, J. (2018) Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: Synthesis and shaping, sorption capacity, mechanisms, and selectivity-A review. J. Hazard. Mater., v.344, p.511-530. doi: 10.1016/j.jhazmat.2017.10.047
  3. Asgari, P., Mousavi, S. H., Aghayan, H., Ghasemi, H. and Yousefi, T. (2019) Nd-BTC metal-organic framework (MOF); synthesis, characterization and investigation on its adsorption behavior toward cesium and strontium ions. Microchem. J., v.150, 104188. doi: 10.1016/j.microc.2019.104188
  4. Azizian, S. (2004) Kinetic models of sorption: A theoretical analysis. J. Colloid Interface Sci., v.276, n.1, p.47-52. doi: 10.1016/j.jcis.2004.03.048
  5. Braverman, E. R., Sohler, A. and Pfeiffer, C. C. (1988) Cesium chloride: preventive medicine for radioactive cesium exposure?. Med. Hypotheses, v.26, n.2, p.93-95. doi: 10.1016/0306-9877(88)90058-8
  6. Chen, S., Hu, J., Mi, G., Guo, Y. and Deng, T. (2021) Novel montmorillonite-sulfur composite for enhancement of selective adsorption toward cesium. Green Energy Environ., v.6, n.6, p.893-902. doi: 10.1016/j.gee.2020.07.016
  7. Chen, S., Hu, J., Shi, J., Wang, M., Guo, Y., Li, M., Duo, J. and Deng, T. (2019) Composite hydrogel particles encapsulated ammonium molybdophosphate for efficiently cesium selective removal and enrichment from wastewater. J. Hazard. Mater., v.371, p.694-704. doi: 10.1016/j.jhazmat.2019.03.047
  8. Crini, G., Peindy, H. N., Gimbert, F. and Robert, C. (2007) Removal of CI basic green 4 (malachite green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep. Purif. Technol., v.53, n.1, p.97-110. doi: 10.1016/j.seppur.2006.06.018
  9. Cui, M., Jang, M., Cannon, F. S., Na, S., Khim, J. and Park, J. K. (2013) Removal of dissolved Zn (II) using coal mine drainage sludge: Implications for acidic wastewater treatment. J. Environ. Manage., v.116, p.107-112. doi: 10.1016/j.jenvman.2012.12.013
  10. Cui, M., Jang, M., Cho, S. H. and Khim, J. (2011) Potential application of sludge produced from coal mine drainage treatment for removing Zn (II) in an aqueous phase. Environ. Geochem. Health, v.33, n.1, p.103-112. doi: 10.1007/s10653-010-9348-0
  11. El-Naggar, M. R., El-Kamash, A. M., El-Dessouky, M. I. and Ghonaim, A. K. (2008) Two-step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions. J. Hazard. Mater., v.154, p.963-972. doi: 10.1016/j.jhazmat.2007.10.115
  12. Eun, S., Ryu, J., Kim, H., Hong, H. J. and Kim, S. (2021) Simultaneous removal of radioactive cesium and strontium from seawater using a highly efficient prussian blue-embedded alginate aerogel. J. Environ. Manage., v.297, 113389. doi: 10.1016/j.jenvman.2021.113389
  13. Freundlich, H. (1907) uber die adsorption in losungen. Z. Phys. Chem., v.57, n.1, p.385-470. doi: 10.1515/zpch-1907-5723
  14. Han, E., Kim, Y. G., Yang, H. M., Yoon, I. H. and Choi, M. (2018) Synergy between zeolite framework and encapsulated sulfur for enhanced ion-exchange selectivity to radioactive cesium. Chem. Mater., v.30, n.16, p.5777-5785. doi: 10.1021/acs.chemmater.8b02782
  15. Ho, Y. S., Huang, C. T. and Huang, H. W. (2002) Equilibrium sorption isotherm for metal ions on tree fern. Process Biochemistry, v.37, n.12, p.1421-1430. doi: 10.1016/S0032-9592(02)00036-5
  16. Hu, Y. Y., Pan, C., Zheng, X., Hu, F., Xu, L., Xu, G., Jian Y. and Peng, X. (2021) Prediction and optimization of adsorption properties for Cs+ on NiSiO@ NiAlFe LDHs hollow spheres from aqueous solution: Kinetics, isotherms, and BBD model. J. Hazard. Mater., v.401, 123374. doi: 10.1016/j.jhazmat.2020.123374
  17. Imoto, J., Ochiai, A., Furuki, G., Suetake, M., Ikehara, R., Horie, K., Takehara, M., Yamasaki, S., Naba, K., Ohnuki, T., Law, G., Grambow, B., Ewing, R. and Utsunomiya, S. (2017) Isotopic signature and nano-texture of cesium-rich micro-particles: Release of uranium and fission products from the Fukushima Daiichi Nuclear Power Plant. Sci. Rep., v.7, n.1, 5409. doi: 10.1038/s41598-017-05910-z
  18. Kang, S., Lee, J., Park, S. M., Alessi, D. S. and Baek, K. (2020) Adsorption characteristics of cesium onto calcium-silicate-hydrate in concrete powder and block. Chemosphere, v.259, 127494. doi: 10.1016/j.chemosphere.2020.127494
  19. KEPCO (Korea Electric Power Corporation) (2021) Statistics of Electric Power in Korea.
  20. Khandaker, S., Kuba, T., Kamida, S. and Uchikawa, Y. (2017) Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal. J. Environ. Chem. Eng., v.5, n.2, p.1456-1464. doi: 10.1016/j.jece.2017.02.014
  21. Kirby, C. S., Decker, S. M. and Macander, N. K. (1999) Comparison of color, chemical and mineralogical compositions of mine drainage sediments to pigment. Environ. Geol., v.37 n.3, p.243-254. doi: 10.1007/s002540050382
  22. Kwon, S., Kim, Y. and Roh, Y. (2021) Effective cesium removal from Cs-containing water using chemically activated opaline mudstone mainly composed of opal-cristobalite/tridymite (opal-CT). Sci. Rep., v.11, n.1, p.1-15. doi: 10.1038/s41598-021-94832-y
  23. Lalhmunsiama, L., Kim, J. G., Choi, S. S. and Lee, S. M. (2018). Recent advances in adsorption removal of cesium from aquatic environment. Appl. Chem. Eng., v.29, n.2, p.127-137. doi: 10.14478/ace.2018.1019
  24. Langmuir, I. (1916) The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., v.38, p.2221-2295. doi: 10.1021/ja02268a002
  25. Lee, H., Kim, D., Kim, J., Ji, M. K., Han, Y. S., Park, Y. T., Yun, H.S. and Choi, J. (2015) As (III) and As (V) removal from the aqueous phase via adsorption onto acid mine drainage sludge (AMDS) alginate beads and goethite alginate beads. J. Hazard. Mater., v.292, p.146-154. doi: 10.1016/j.jhazmat.2015.03.026
  26. Lee, W. C., Lee, S. W., Yun, S. T., Lee, P. K., Hwang, Y. S. and Kim, S. O. (2016) A novel method of utilizing permeable reactive kiddle (PRK) for the remediation of acid mine drainage. J. Hazard. Mater., v.301, p.332-341. doi: 10.1016/j.jhazmat.2015.09.009
  27. Liu, Z., Zhou, Y., Guo, M., Lv, B., Wu, Z. and Zhou, W. (2019) Experimental and theoretical investigations of Cs+ adsorption on crown ethers modified magnetic adsorbent. J. Hazard. Mater, v.371, p.712-720. doi: 10.1016/j.jhazmat.2019.03.022
  28. MIRECO (Mine Reclamation Corp) (2021) Journal of Mine Reclamation Technology and Policy. v.15 n.1 p.5-7.
  29. Nilchi, A., Saberi, R., Moradi, M., Azizpour, H. and Zarghami, R. (2011) Adsorption of cesium on copper hexacyanoferrate-PAN composite ion exchanger from aqueous solution. Chem. Eng. J., v.172, n.1, p.572-580. doi: 10.1016/j.cej.2011.06.011
  30. Park, Y., Lee, Y. C., Shin, W. S. and Choi, S. J. (2010) Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate-polyacrylonitrile (AMP-PAN). Chem. Eng. J., v.162, n.2, p.685-695. doi: 10.1016/j.cej.2010.06.026
  31. Pearson, R. G. (1963) Hard and soft acids and bases. J. Am. Chem. Soc., v.85, n.22, p.3533-3539. doi: 10.1021/ja00905a001
  32. Pearson, R. G. (1966) Acids and bases: Hard acids prefer to associate with hard bases, and soft acids prefer to associate with soft bases. Science, v.151, n.3707, p.172-177. doi: 10.1126/science.151.3707.172
  33. PRIS (Power Reactor Information System) (2022) Country Statistics. PRIS -Country Statistics (iaea.org).
  34. Qing, C. (2010). Study on the adsorption of lanthanum (III) from aqueous solution by bamboo charcoal. J. Rare Earths, v.28, 125-131. Doi: 10.1016/S1002-0721(10)60272-4
  35. Rahayu, N. W. S. T., Park, J., Yang, M., Wang, S. and Lee, M. (2020) Cesium removal from a water system using a polysulfone carrier containing nitric acid-treated bamboo charcoal. J. Environ. Radioact., v.225, 106374. Doi: 10.1016/j.jenvrad.2020.106374
  36. Rao, S. V. S., Paul, B., Lal, K. B., Narasimhan, S. V. and Ahmed, J. (2000) Effective removal of cesium and strontium from radioactive wastes using chemical treatment followed by ultra filtration. J. Radioanal. Nucl. Chem., v.246, n.2, p.413-418. doi: 10.1023/A:1006771918337
  37. Seff, K. (1972) Crystal structure of a sulfur sorption complex of zeolite 4A. J. Phys. Chem., v.76, n.18, p.2601-2605. doi: 10.1021/j100662a023
  38. Sung, I. J. (2014) A study on treatment of acid mine drainage by electrolysis process and oxidation process. Doctor's dissertation, Kwangwoon University, Korea, p.33-34.
  39. Tsai, S. C., Wang, T. H., Li, M. H., Wei, Y. Y. and Teng, S. P. (2009) Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J. Hazard. Mater., v.161, n.2-3, p.854-861. doi: 10.1016/j.jhazmat.2008.04.044
  40. Wei, X., Viadero Jr, R. C. and Bhojappa, S. (2008) Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants. Water Res., v.42, n.13, p.3275-3284. doi: 10.1016/j.watres.2008.04.005
  41. Wu, J., Li, B., Liao, J., Feng, Y., Zhang, D., Zhao, J., Wen, W., Yang, Y. and Liu, N. (2009) Behavior and analysis of cesium adsorption on montmorillonite mineral. J. Environ. Radioact., v.100, n.10, p.914-920. doi: 10.1016/j.jenvrad.2009.06.024
  42. Xia, M., Zheng, X., Du, M., Wang, Y., Ding, A. and Dou, J. (2018) The adsorption of Cs+ from wastewater using lithium-modified montmorillonite caged in calcium alginate beads. Chemosphere. v.203, p.271-280. doi: 10.1016/j.chemosphere.2018.03.129
  43. Yang, H., Li, H., Zhai, J., Sun, L., Zhao, Y. and Yu, H. (2014) Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil. Chem. Eng. J., v.246, p.10-19. doi: 10.1016/j.cej.2014.02.060
  44. Zakrzewska-Trznadel, G. (2013) Advances in membrane technologies for the treatment of liquid radioactive waste. Desalination, v.321, p.119-130. doi: 10.1016/j.desal.2013.02.022
  45. Zhang, H., Zhao, X., Wei, J. and Li, F. (2015) Removal of cesium from low-level radioactive wastewaters using magnetic potassium titanium hexacyanoferrate. Chem. Eng. J., v.275, p.262-270. doi: 10.1016/j.cej.2015.04.052
  46. Zhang, J., Yang, L., Dong, T., Pan, F., Xing, H. and Liu, H. (2018) Kinetics-controlled separation intensification for cesium and rubidium isolation from salt lake brine. Ind. Eng. Chem. Res., v.57, n.12, p.4399-4406. doi: 10.1021/acs.iecr.7b04820
  47. Zheng, X. M., Dou, J. F., Xia, M. and Ding, A. Z. (2017) Ammonium-pillared montmorillonite-CoFe2O4 composite caged in calcium alginate beads for the removal of Cs+ from wastewater. Carbohydr. Polym., v.167, p.306-316. doi: 10.1016/j.carbpol.2017.03.059