DOI QR코드

DOI QR Code

Development of Pore Filled Anion Exchange Membrane Using UV Polymerization Method for Anion Exchange Membrane Fuel Cell Application

음이온교환막 연료전지 응용을 위한 UV 중합법을 이용한 세공 충진 음이온교환막 개발

  • Ga Jin Kwak (Department of Polymer Science & Engineering School of Materials Science & Engineering, Gyeongsang National University) ;
  • Do Hyeong Kim (Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Sang Yong Nam (Department of Polymer Science & Engineering School of Materials Science & Engineering, Gyeongsang National University)
  • 곽가진 (경상국립대학교 나노신소재공학부 고분자공학과) ;
  • 김도형 (경상국립대학교 그린에너지융합연구소) ;
  • 남상용 (경상국립대학교 나노신소재공학부 고분자공학과)
  • Received : 2023.02.24
  • Accepted : 2023.04.14
  • Published : 2023.04.30

Abstract

In this study, pore-filled ion exchange membranes with low membrane resistance and high hydroxide ion conductivity was developed. To improve alkali durability, a porous substrate made of polytetrafluoroethylene was used, and a copolymer was prepared using monomers 2-(dimethyl amino) ethyl methacrylate (DMAEMA) and vinyl benzyl chloride (VBC) for pores. divinyl benzene (DVB) was used as the cross-linker, and ion exchange membranes were prepared for each cross-linking agent content to study the effect of the cross-linker content on DMAEMA-DVB and VBC-DMAEMA-DVB copolymers. As a result, chemical stability is improved by using a PTFE material substrate, and productivity can be increased by enabling fast photo polymerization at a low temperature by using a low-pressure UV lamp. To confirm the physical and chemical stability of the ion exchange membrane required for an anion exchange membrane fuel cell, tensile strength, and alkali resistance tests were conducted. As a result, as the cross-linking degree increased, the tensile strength increased by approximately 40 MPa, and finally, through the silver conductivity and alkali resistance tests, it was confirmed that the alkaline stability increased as the cross-linking agent increased.

본 연구에서는 낮은 막 저항과 높은 수산화 이온 전도성을 가지는 세공 충진 이온교환막 제조법으로 연구하였다. 알칼리 내구성을 향상하기 위해 폴리 테트라 플로오 에틸렌 소재인 다공성 지지체를 사용하였고 세공에는 단량체 2-(dimethylamino)ethyl methacrylate (DMAEMA), vinylbenzyl chloride (VBC)를 이용하여 copolymer를 제조했다. 가교제는 divinylbenzene (DVB)를 사용하였고 가교제 함량별로 이온교환막을 제조하여 DMAEMA-DVB와 VBC-DMAEMA-DVB copolymer에서 가교제 함량이 미치는 영향에 관해 연구하였다. 그 결과, PTFE 소재 지지체를 이용하여 화학적 안정성이 향상했고 저압 UV 램프를 사용하여 낮은 온도에서 빠른 광중합이 가능하여 생산성을 높일 수 있는 장점이 있다. 음이온교환 막 연료전지에 요구되는 이온교환막의 물리적 및 화학적 안정성을 확인하기 위해서 인장강도와 내알칼리성 테스트를 진행하였다. 그 결과, 가교도가 증가할수록 인장강도 대략 40 MPa가 증가하였고, 최종적으로 이온전도도와 내알칼리성 테스트를 통해 가교제 함량이 증가할수록 알칼리 안정성이 증가하는 것을 확인하였다.

Keywords

Acknowledgement

이 성과는 2022년도 정부(교육부)의 재원으로 한국연구재단의 기초연구사업(No.2020R1A6A03038697)의 지원을 받아 수행된 연구이며 이에 감사를 드립니다.

References

  1. S. J. Yoon, "Korea's 2050 carbon neutral scenario: Contents and challengs", Energy Econ. Inst., 82, 18 (2021)
  2. G. Das, J.-H. Choi, P. K. T. Nguyen, D.-J. Kim, and Y. S. Yoon, "Anion exchange membranes for fuel cell application: A review", Polymers, 14, 1197 (2022)
  3. T.-Y. Son, T.-H. Kim, H. J. Kim, and S.-Y. Nam, "Problems and solutions of anion exchange membranes for anion exchange membrane fuel cell (AEMFC)", Appl. Chem. Eng., 29, 489 (2018).
  4. D. R. Dekel, "Review of cell performance in anion exchange membrane fuel cells", J. Power Sources, 375, 158 (2017).
  5. T. S. Mayadevi, S. Sung, L. Varghese, and T.-H. Kim, "Poly (meta/para-terphenylene-methyl piperidinium)-based anion exchange membranes: The effect of backbone structure in AEMFC application", Membranes, 10, 329 (2020).
  6. R. Cownden, M. Nahon, and M. A. Rosen, "Exergy analysis of a fuel cell power system for transportation applications", Int. J. Exergy, 1, 112-121 (2001), https://doi.org/10.1016/S1164-0235(01)00017-6
  7. R. O'Hayre, S.-W. Cha, W. G. Colella, and F. B. Prinz, "Fuel Cell Fundamentals", John Wiley & Sons, New Jersey, United States (2016).
  8. M. Hren, M. Bozic, D. Fakin, K. S. Kleinschek, and S. Gorgieva, "Alkaline membrane fuel cells: anion exchange membranes and fuels", Sustain. Energy Fuels, 5, 604 (2021).
  9. H. Choi, C. Rhyu, S. Lee, C. Byun, and G. Hwang, "Study on anion exchange membrane for the alkaline electrolysis", Trans. of the Korean Hydrogen and New Energy Society, 22, 184 (2011).
  10. K.-B. Heo, M. Kim, K.-H. Jung, and B.-S. Kim, "Study of anion-exchange membrane by 2-hydroxyethyl methacrylate", Theories and Applications of Chem. Eng., 11, 235 (2005).
  11. T. Yamaguchi, F. Miyata, and S. Nakao, "Pore filling type polymer electrolyte membranes for a direct methanol fuel cell", J. Membr. Sci., 214, 283 (2003).
  12. D.-H. Kim and M.-S. Kang, "Development and applications of pore-filled ion-exchange membranes", Membr. J., 28, 307 (2018).
  13. J. H. Song, B. K. Seo, and Y. J. Choi, "Structural studies in anion exchange membrane prepared by vinyl benzyl chloride and its electrochemical properties", Membr. J., 25, 310 (2015).
  14. D. Shin, "Improvement in chemical stability of polymer electrolyte membranes for alkaline membrane fuel cell applications", KIC News, 21, 25 (2018).
  15. J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, T. Xu, and L. Zhuang, "Anion-exchange membranes in electrochemical energy systems", Energy Environ. Sci., 7, 3135 (2014).
  16. J. Wang, S. Gu, R. Xiong, B. Zhang, B. Xu, and Y. Yan, "Structure-property relationships in hydroxide-exchange membranes with cation strings and high ion-exchange capacity", ChemSusChem, 8, 4229 (2015).
  17. S. Sung, B. Lee, O. Choi and T.-H. Kim, "Development of anion exchange membrane based on crosslinked poly(2,6-dimethyl-1,4-phenylene oxide) for alkaline fuel cell application", Membr. J., 29, 173 (2019).
  18. G. Couture, A. Alaaeddine, F. Boschet, and B. Ameduri, "Polymeric materials as anion-exchange membranes for alkaline fuel cells", Prog. Polym. Sci., 36, 1521 (2011).
  19. D. R. Dekel, M. Amar, S. Willdorf, M. Kosa, S. Dhara, and C. E. Diesendruck, "Effect of water on the stability of quaternary ammonium groups for anion exchange membrane fuel cell applications", Chem. Mater., 29, 4425 (2017).