DOI QR코드

DOI QR Code

Numerical and analytical investigation of parameters influencing the behavior of shear beams strengthened by CFRP wrapping

  • Ceyhun Aksoylu (Department of Civil Engineering, Konya Technical University) ;
  • Yasin Onuralp Ozkilic (Department of Civil Engineering, Necmettin Erbakan University) ;
  • Sakir Yazman (Ilgin Vocational School, Selcuk University) ;
  • Mohammed Alsdudi (Department of Civil Engineering, Konya Technical University) ;
  • Lokman Gemi (Meram Vocational School, Necmettin Erbakan University) ;
  • Musa Hakan Arslan (Department of Civil Engineering, Konya Technical University)
  • Received : 2022.11.22
  • Accepted : 2023.03.16
  • Published : 2023.04.25

Abstract

In this study, a parametric study was performed considering material properties of concrete, material properties of steel, the number of longitudinal reinforcement (reinforcement ratio), CFRP ply orientations, a number of layers as variables by using ABAQUS. Firstly, the parameters used in the Hashin failure criteria were verified using four coupon tests of CFRP. Secondly, the numerical models of the beams strengthened by CFRP were verified using five experimental data. Finally, eighty numerical models and eighty analytic calculations were developed to investigate the effects of the aforementioned variables. The results revealed that in the case of using fibrous polymer to prevent shear failure, the variables related to reinforced concrete significantly affected the behavior of specimens, whereas the variables related to CFRP composite have a slight effect on the behavior of the specimens. As a result of numerical analysis, while the increase in the longitudinal tensile and compression reinforcement, load bearing capacity increases between 23.6%-70.7% and 5.6%-12.2%, respectively. Increase in compressive strength (29 MPa to 35 MPa) leads to a slight increase in the load-carrying capacity of the specimens between 4.6% and 7.2%. However, the decrease in the compressive strength (29 MPa to 20 MPa) significantly affected (between 6.4% and 8.1% decrease observed) the behavior of the specimens. As the yield strength increases or decreases, the capacity of specimens increase approximately 27.1% or decrease 12.1%. The effects of CFRP ply orientation results have been obtained as a negligible well approximately 3.7% difference. An increasing number of CFRP layers leads to almost no effect (approximately 2.8%) on the behavior of the specimen. Finally, according to the numerical analysis, the ductility values obtained between 4.0 and 6.9 indicate that the beams have sufficient ductility capacity.

Keywords

Acknowledgement

Authors especially would like to thank Konya Technical University BAP (Project Number: 201004038) and also thank laboratory technician Yuksel Ciftci who works with dedication in the experiments.

References

  1. Acir, S. (2017), Prediction Of Shear Strength Of Frp - Reinforced Concrete Beams Based On Gene Expressing Programming, Gazi University Ankara.
  2. Adalier, K. and Aydingun, O. (2001), "Structural engineering aspects of the June 27, 1998 Adana-Ceyhan (Turkey) earthquake", Eng. Struct., 23(4), 343-355. https://doi.org/10.1016/S0141-0296(00)00046-8.
  3. Ahmed, E. and Sobuz, H.R. (2011), "Experimental study on long-term behaviour of CFRP strengthened RC beams under sustained load", Struct. Eng. Mech., 40(1), 105-120, http://dx.doi.org/10.12989/sem.2011.40.1.105.
  4. Aksoylu, C., Ozkilic, Y.O. and Arslan, M.H. (2020), "Damages on prefabricated concrete dapped-end purlins due to snow loads and a novel reinforcement detail", Eng. Struct., 225, 111225. https://doi.org/10.1016/j.engstruct.2020.111225.
  5. Aksoylu, C., Ozkilic, Y.O., Yazman, S., Gemi, L. and Arslan, M.H. (2021), "Inceltilmis Uclu Onuretimli Asik Kirislerinin Yuk Tasima Kapasitelerinin Deneysel ve Numerik Olarak Irdelenmesi ve Cozum Onerileri", Teknik Dergi. 32(3).
  6. Aksoylu, C., Yazman, S., Ozkilic, Y.O., Gemi, L. and Arslan, M.H. (2020), "Experimental analysis of reinforced concrete shear deficient beams with circular web openings strengthened by CFRP composite", Compos. Struct., 249, 112561. https://doi.org/10.1016/j.compstruct.2020.112561.
  7. Aksoylu, C. (2022), "Shear strengthening of reinforced concrete beams with minimum CFRP and GFRP strips using different wrapping technics without anchoring application", Steel Compos. Struct., 44, 845-965.
  8. Alam, M.A. and Al Riyami, K. (2018), "Shear strengthening of reinforced concrete beam using natural fibre reinforced polymer laminates", Constr. Build. Mater., 162, 683-696. https://doi.org/10.1016/j.conbuildmat.2017.12.011.
  9. Alhamdan, Y. and Dirikgil, T. (2020), "Experimental investigation of the flexural strengthening of fixed-supported rc beams", Int. J. Civil Eng., 18(11), 1229-1246. https://doi.org/10.1007/s40999-020-00531-6.
  10. Alkhatib, S. and Deifalla, A. (2022), "Reliability-based assessment and optimization for the two-way shear design of lightweight reinforced concrete slabs using the ACI and EC2", Case Studies Constr. Mater., 17, e01209, https://doi.org/10.1016/j.cscm.2022.e01209.
  11. Alsdudi, M., Arslan, M.H., Ozkilic, Y.O., Yazman, S., Aksoylu, C. and Gemi, L. (2020), Determination of Optimum CFRP composite Amount in Strengthening Reinforced Concrete Beams with Inadequate Shear Strength, University of Porto, Portugal
  12. Alshlash, S. (2019), Experimental Study on Repair and Reinforcement Methods of Concrete Beams and Cost Analysis, Konya Technical University, Konya.
  13. Al-Rousan, R.Z. (2017), "Shear behavior of RC beams externally strengthened and anchored with CFRP composites", Struct. Eng. Mech., 63(4), 447-456, http://dx.doi.org/10.12989/sem.2017.63.4.447.
  14. Altin, S., Anil, O., Toptas, T. and Kara, M.E. (2011), "Retrofitting of shear damaged RC beams using CFRP strips", Steel Compos. Struct., 11(3), 207-223, http://dx.doi.org/10.12989/scs.2011.11.3.207.
  15. Alyousef, R., Topper, T. and Al-Mayah, A. (2018), "Crack growth modeling of tension lap spliced reinforced concrete beams strengthened with fibre reinforced polymer wrapping under fatigue loading", Constr. Build. Mater., 166, 345-355. https://doi.org/10.1016/j.conbuildmat.2018.01.136.
  16. AL-Shalif, S.A., Akin, A., Aksoylu, C. and Arslan, M.H. (2022), "Strengthening of shear-critical reinforced concrete T-beams with anchored and non-anchored GFRP fabrics applications", In Struct., 44, 809-827. Elsevier. https://doi.org/10.1016/j.istruc.2022.08.044
  17. Amaireh, L.K. and Al-Tamimi, A. (2020), "Optimum configuration of CFRP composites for strengthening of reinforced concrete beams considering the contact constraint", Procedia Manufacturing, 44, 350-357. https://doi.org/10.1016/j.promfg.2020.02.284
  18. Anil, O. and Yilmaz, T. (2015), "Low velocity impact behavior of shear deficient RC beam strengthened with CFRP strips", Steel Compos. Struct., 19(2), 417-439, http://dx.doi.org/10.12989/scs.2015.19.2.417.
  19. Arduini, M., Nanni, A., Di Tommaso, A. and Focacci, F. (1997), "Shear response of continuous RC beams strengthened with carbon FRP sheets", Non-Metallic (FRP) Reinforcement for Concrete Structures, Proceedings of the Third Symposium.
  20. Arslan, M., Ceylan, M. and Koyuncu, T. (2012), "An ANN approaches on estimating earthquake performances of existing RC buildings", Neural Network World, 22(5), 443.
  21. Arslan, M.H. and Erkan, I.H. (2011), "An overview on earthquake load reduction factor of reinforced concrete buildings", Eng. Sci. (e-Journal of New World Sciences Academy), 6(4), 1486-1497.
  22. Arslan, M.H. and Korkmaz, H.H. (2007), "What is to be learned from damage and failure of reinforced concrete structures during recent earthquakes in Turkey?", Eng. Fail. Anal., 14(1), 1-22. https://doi.org/10.1016/j.engfailanal.2006.01.003.
  23. ASTM/D3039 (2008), Standard Test Method for Tensile Properties of Polymer Matrix Cmposite Mterials", ASTM, 3039 2008.
  24. Aykac, S. and Yilmaz, M. (2011), "Behaviour and strength of rc beams with regular triangular or circular web openings", J. Faculty Eng. Arch. Gazi Univ., 26(3), 711-718.
  25. Barris, C., Torres, L., Vilanova, I., Mias, C. and Llorens, M. (2017), "Experimental study on crack width and crack spacing for Glass-FRP reinforced concrete beams", Eng. Struct. 131, 231-242. https://doi.org/10.1016/j.engstruct.2016.11.007.
  26. Badra, N., Aboul Haggag, S.Y., Deifalla, A. and Salem, N.M. (2022), "Development of machine learning models for reliable prediction of the punching shear strength of FRP-reinforced concrete slabs without shear reinforcements measurement", J. Int. Measure. Confederation, 201, 111723, https://doi.org/10.1016/j.measurement.2022.111723.
  27. Boukhezar, M., Samai, M.L., Mesbah, H.A. and Houari, H. (2013), "Flexural behaviour of reinforced low-strength concrete beams strengthened with CFRP plates", Struct. Eng. Mech., 47(6), 819-838, http://dx.doi.org/10.12989/sem.2013.47.6.819.
  28. Boumaaza, M., Bezazi, A., Bouchelaghem, H., Benzennache, N., Amziane, S. and Scarpa, F. (2017), "Behavior of pre-cracked deep beams with composite materials repairs", Struct. Eng. Mech., 63(5), 575-583.
  29. Bruneau, M. (2002), "Building damage from the Marmara, Turkey earthquake of August 17, 1999", J. Seismol., 6(3), 357-377. https://doi.org/10.1023/A:1020035425531.
  30. Bulut, N., Anil, O. and Belgin, C.M. (2011), "Nonlinear finite element analysis of RC beams strengthened with CFRP strip against shear", Comput. Concr., 8(6), 717-733, http://dx.doi.org/10.12989/cac.2011.8.6.717.
  31. Capozucca, R. and Magagnini, E. (2018), "Experimental vibration response of homogeneous beam models damaged by notches and strengthened by CFRP lamina", Compos. Struct., 206 563-577. https://doi.org/10.1016/j.compstruct.2018.08.082
  32. Carolin, A. and Taljsten, B. (2005), "Theoretical study of strengthening for increased shear bearing capacity", J. Compos. Constr., 9(6), 497-506. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:6(497)
  33. Ceren, G. (2019), Analysing of Debonding Behaviour of FRP in Reinforced Concrete Members Strengthened with Frp, Ege University, Izmir.
  34. CSA-S806-02 (2002), Canadian Standard Association, CSA, Rexdale BD, Toronto.
  35. Deifalla, A.F., Zapris, A.G., Chalioris, C.E. (2021). "Multivariable regression strength model for steel fiber-reinforced concrete beams under torsion", Materials, 14(14), 3889, https://doi.org/10.3390/ma14143889.
  36. Deifalla, A. (2021a), "Refining the torsion design of fibered concrete beams reinforced with FRP using multi-variable nonlinear regression analysis for experimental results", Eng. Struct., 226, 111394, https://doi.org/10.1016/j.engstruct.2020.111394.
  37. Deifalla, A. (2020a), "Torsion design of lightweight concrete beams without or with fibers: A comparative study and a refined cracking torque formula", Struct., 28, 786-802. https://doi.org/10.1016/j.istruc.2020.09.004.
  38. Deifalla, A. .(2020b), "Design of lightweight concrete slabs under two-way shear without shear reinforcements: A comparative study and a new formula", Eng. Struct., 222, 111076, https://doi.org/10.1016/j.engstruct.2020.111076.
  39. Deifalla, A. (2020c), "Strength and ductility of lightweight reinforced concrete slabs under punching shear", Structures, 27, 2329-2345. https://doi.org/10.1016/j.istruc.2020.08.002.
  40. Deifalla, A., Awad, A., Seleem, H. and Abdelrahman, A. (2020a), "Investigating the behavior of lightweight foamed concrete T-beams under torsion, shear, and flexure", Eng. Struct., 219, 110741, https://doi.org/10.1016/j.engstruct.2020.110741.
  41. Deifalla, A., Awad, A., Seleem, H. and Abdelrahman, A. (2020b), "Experimental and numerical investigation of the behavior of LWFC L-girders under combined torsion", Structures, 26, 362-377. https://doi.org/10.1016/j.istruc.2020.03.070.
  42. Deifalla, A.F. and Mukhtar, F.M. (2022). "Shear strength of lightweight and normal-weight concrete slender beams and slabs: An appraisal of design codes", Adv. Struct. Eng., 25(12), pp. 2444-2466. https://doi.org/10.1177/13694332221098869.
  43. Deifalla, A.F. (2021b). "A strength and deformation model for prestressed lightweight concrete slabs under two-way shear", Adv. Struct. Eng., 24(14), 3144-3155. https://doi.org/10.1177/13694332211020408.
  44. Dere, Y. (2017), "Assessing a retrofitting method for existing RC buildings with low seismic capacity in Turkey", J. Perform. Constr. Facil., 31(2), 04016098. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000969.
  45. Dere, Y. and Koroglu, M.A. (2017), "Nonlinear FE modeling of reinforced concrete", Int. J. Struct. Civil Eng. Res., 6(1), 71-74. https://doi.org/10.18178/ijscer.6.1.71-74
  46. Dogangun, A. (2004), "Performance of reinforced concrete buildings during the May 1, 2003 Bingol Earthquake in Turkey", Eng. Struct., 26(6), 841-856. https://doi.org/10.1016/j.engstruct.2004.02.005.
  47. Duran, B., Tunaboyu, O., Kaplan, O., Avsar, O.J. (2018), "Effectiveness of seismic repairing stages with CFRPs on the seismic performance of damaged RC frames", Struct. Eng. Mech., 67(3), 233-244, http://dx.doi.org/10.12989/sem.2018.67.3.233.
  48. Ebid, A.M., Deifalla, A.F., Mahdi, H.A. (2022), "Evaluating shear strength of light-weight and normal-weight concretes through artificial intelligence", Sustainability (Switzerland), 14(21), 14010, https://doi.org/10.3390/su142114010.
  49. El-Shihy, A., Fawzy, H., Mustafa, S., El-Zohairy, A.J.S. and Structures, C. (2010), "Experimental and numerical analysis of composite beams strengthened by CFRP laminates in hogging moment region", Steel Compos. Struct., 10(3), 281-295, http://dx.doi.org/10.12989/scs.2010.10.3.281.
  50. Enis, D. (2019), Strengthening of RC beams subjected to corrosion under the effect of flexural, Erzincan University, Erzincan.
  51. Faleschini, F., Gonzalez-Libreros, J., Zanini, M.A., Hofer, L., Sneed, L. and Pellegrino, C. (2019), "Repair of severely-damaged RC exterior beam-column joints with FRP and FRCM composites", Compos. Struct., 207, 352-363. https://doi.org/10.1016/j.compstruct.2018.09.059.
  52. Fu, B., Teng, J.G., Chen, J.F., Chen, G.M. and Guo, Y.C. (2017), "Concrete cover separation in FRP-Plated RC beams: mitigation using FRP U-Jackets", J. Compos. for Constr., 21(2), 04016077. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000721.
  53. Gamino, A.L., Bittencourt, T.N., de Oliveira e Sousa, J.L.A. (2009), "Finite element computational modeling of externally bonded CFRP composites flexural behavior in RC beams", Comp. Conc., 6(3), 187-202, http://dx.doi.org/10.12989/cac.2009.6.3.187.
  54. Gemi, L., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan, M.H. (2019), "Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite", Compos. Struct., 229, 111399. https://doi.org/10.1016/j.compstruct.2019.111399.
  55. Gemi, L. and Koroglu, M.A. (2018), "Cekme bolgesi lifli beton olan cam fiber takviyeli polimer (GFRP) ve celik donatili etriyesiz kirislerin egilme etkisi altindaki davranisi ve hasar analizi", Selcuk universitesi Muhendislik, Bilim ve Teknoloji Dergisi. 6(4), 654-667.
  56. Gemi, L., Koroglu, M.A. and Ashour, A. (2018), "Experimental study on compressive behavior and failure analysis of composite concrete confined by glass/epoxy ±55° filament wound pipes", Compos. Struct., 187, 157-168. https://doi.org/10.1016/j.compstruct.2017.12.049.
  57. Gemi, L., Alsdudi, M., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan, M.H. (2022), "Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams", Steel Compos. Struct., 43, 735-757. https://doi.org/10.12989/scs.2022.43.6.735.
  58. Godat, A., Qu, Z., Lu, X.Z., Labossiere, P., Ye, L.P. and Neale, K.W. (2010), "Size effects for reinforced concrete beams strengthened in shear with CFRP strips", J. Compos. Constr., 14(3), 260-271. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000072.
  59. Hashin, Z. (1980), "Failure criteria for unidirectional fiber composites", J. Appl. Mech., 47(2), 329-334. https://doi.org/10.1115/1.3153664
  60. Hashin, Z. and Rotem, A. (1973), "A fatigue failure criterion for fiber reinforced materials", J. Compos. Mater., 7(4), 448-464. https://doi.org/10.1177/002199837300700404.
  61. Huo, J., Li, Z., Zhao, L., Liu, J. and Xiao, Y. (2018), "Dynamic behavior of carbon fiber-reinforced polymer-strengthened reinforced concrete beams without stirrups under impact loading", ACI Struct. J., 115(3), 775-787.
  62. Hawileh, R.A., Abdalla, J.A., Tanarslan, M.H. and Naser, M.Z. (2011), "Modeling of nonlinear cyclic response of shear-deficient RC T-beams strengthened with side bonded CFRP fabric strips", Comp. Concr., 8(3), 193-206, http://dx.doi.org/10.12989/cac.2011.8.2.193.
  63. Jayaprakash, J., Samad, A.A.A., Abbasovich, A.A., Ali, A.A.A. (2007), "Repair of precracked RC rectangular shear beams using CFRP strip technique", Struct. Eng. Mech., 26(4), 427-439, http://dx.doi.org/10.12989/sem.2007.26.4.427.
  64. Kachlakev, D. and McCurry, D. (2000), "Behavior of full-scale reinforced concrete beams retrofitted for shear and flexural with FRP laminates", Compos. Part B: Eng., 31(6-7), 445-452. https://doi.org/10.1016/S1359-8368(00)00023-8.
  65. Kaltakci, M.Y., Arslan, M.H., Yilmaz, U.S. and Arslan, H.D. (2008), "A new approach on the strengthening of primary school buildings in Turkey: An application of external shear wall", Build. Environ., 43(6), 983-990. https://doi.org/10.1016/j.buildenv.2007.02.009.
  66. Karzad, A.S., Al Toubat, S., Maalej, M. and Estephane, P. (2017), "Repair of reinforced concrete beams using carbon fiber reinforced polymer", MATEC Web of Conferences.
  67. Kantar, E. and Anil, O.J. (2012), "Low velocity impact behavior of concrete beam strengthened with CFRP strip", Steel Compos. Struct., 12(3), 207-230, http://dx.doi.org/10.12989/scs.2012.12.3.207.
  68. Kaygusuz, M.A. (2018), Repair and Strengthening of Elevated Temperature Damaged RC Beams With FRP, Ataturk University, Erzurum.
  69. Khan, U., Al-Osta, M.A. and Ibrahim, A. (2017), "Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets", Struct. Eng. Mech., 61(1), 125-142, http://dx.doi.org/10.12989/sem.2017.61.1.125.
  70. Kim, N., Kim, Y.H. and Kim, H.S. (2015), "Experimental and analytical investigations for behaviors of RC beams strengthened with tapered CFRPs", Struct. Eng. Mech., 53(6), 1067-1081. http://dx.doi.org/10.12989/sem.2015.53.6.1067.
  71. Kim, S. and Aboutaha, R.S. (2004), "Finite element analysis of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams", Comp. Conc., 1(4), 401-416, http://dx.doi.org/10.12989/cac.2004.1.4.401.
  72. Lee, H.Y., Jung, W.T. and Chung, W. (2017), "Flexural strengthening of reinforced concrete beams with pre-stressed near surface mounted CFRP systems", Composite Structures. 163, 1-12. https://doi.org/10.1016/j.compstruct.2016.12.044.
  73. Lee, H.-K., Ha, S.K., Afzal, M.J. (2008), "Finite element analysis of shear-deficient RC beams strengthened with CFRP strips/sheets", Struct. Eng. Mech., 30(2), 247-261, http://dx.doi.org/10.12989/sem.2008.30.2.247.
  74. Lesani, M., Bahaari, M. and Shokrieh, M. (2013), "Numerical investigation of FRP-strengthened tubular T-joints under axial compressive loads", Compos. Struct., 100, 71-78. https://doi.org/10.1016/j.compstruct.2012.12.020.
  75. Lesani, M., Bahaari, M. and Shokrieh, M. (2014), "Experimental investigation of FRP-strengthened tubular T-joints under axial compressive loads", Const. Build. Mater., 53, 243-252. https://doi.org/10.1016/j.conbuildmat.2013.11.097.
  76. Lesani, M., Bahaari, M. and Shokrieh, M. (2015), "FRP wrapping for the rehabilitation of Circular Hollow Section (CHS) tubular steel connections", Thin Wall. Struct., 90, 216-234. https://doi.org/10.1016/j.tws.2014.12.013.
  77. Li, D., Huang, P., Guo, X., Zheng, X., Lin, J. and Chen, Z. (2018), "Fatigue crack propagation behavior of RC beams strengthened with CFRP under cyclic bending loads", Fatigue Fracture Eng. Mater. Struct., 41(1), 212-222. https://doi.org/10.1111/ffe.12673
  78. Li, W., Huang, Z., Huang, Z., Yang, X., Shi, T. and Xing, F. (2020), "Shear behavior of RC beams with corroded stirrups strengthened using FRP laminates: effect of the shear span-to-depth ratio", J. Compos. Constr., 24(4), 04020033. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001042.
  79. Luo, Z., Sinaei, H., Ibrahim, Z., Shariati, M., Jumaat, Z., Wakil, K., Pham, B.T., Mohamad, E.T. and Khorami, M. (2019), "Computational and experimental analysis of beam to column joints reinforced with CFRP plates", Steel Compos. Struct., 30(3), 271-280. http://dx.doi.org/10.12989/scs.2019.30.3.271.
  80. Martin, R., Sandhu, R. and Palazotto, A. (1994), "Experimental and analytical comparisons of failure in thermoplastic composite laminates", Exp. Mech., 34(1), 53-65. https://doi.org/10.1007/BF02328442
  81. Minchenkov, K., Vedernikov, A., Kuzminova, Y., Gusev, S., Sulimov, A., Gulyaev, A. and Safonov, A. (2022), "Effects of the quality of pre-consolidated materials on the mechanical properties and morphology of thermoplastic pultruded flat laminates", Compos. Commun., 35, 101281. https://doi.org/10.1016/j.coco.2022.101281.
  82. Mofidi, A. and Chaallal, O. (2014), "Tests and design provisions for reinforced-concrete beams strengthened in shear using FRP sheets and strips", Int. J. Concr. Struct. Mater., 8(2), 117-128. https://doi.org/10.1007/s40069-013-0060-1
  83. Moradi, E., Naderpour, H. and Kheyroddin, A. (2020), "An experimental approach for shear strengthening of RC beams using a proposed technique by embedded through-section FRP sheets", Compos. Struct., 238, 111988. https://doi.org/10.1016/j.compstruct.2020.111988.
  84. Mustafa, A. (2019), The Effect of Concrete Cover and Concrete Strength on Concrete with FRP Bars Exposed to High Temperature, Sakarya University, Sakarya.
  85. Nayal, R. and Rasheed, H.A. (2006), "Tension stiffening model for concrete beams reinforced with steel and FRP bars", J. Mater. Civil Eng., 18(6), 831-841. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:6(831)
  86. Obaidat, Y.T., Abu-Farsakh, G.A.F.R. and Ashteyat, A.M. (2019), "Retrofitting of partially damaged reinforced concrete beam-column joints using various plate-configurations of CFRP under cyclic loading", Constr. Build. Mater., 198, 313-322. https://doi.org/10.1016/j.conbuildmat.2018.11.267
  87. Obaidat, Y.T., Heyden, S. and Dahlblom, O. (2010), "The effect of CFRP and CFRP/concrete interface models when modelling retrofitted RC beams with FEM", Compos. Struct., 92(6), 1391-1398. https://doi.org/10.1016/j.compstruct.2009.11.008
  88. Oruc, R. (2019), Static and Dynamic Investigation of Shear Deficient Reinforced Concrete Beams Strengthened with Carbon Fiber Reinforced Polymer Strips, Aksaray University, Aksaray.
  89. Osman, B.H., Wu, E., Ji, B. and Abdulhameed, S.S. (2017), "Repair of pre-cracked reinforced concrete (RC) Beams with openings strengthened using FRP sheets under sustained load", Int. J. Concr. Struct. Mater., 11(1), 171-183. https://doi.org/10.1007/s40069-016-0182-3
  90. Osman, B.H., Wu, E., Ji, B. and Abdulhameed, S.S. (2018), "Effect of reinforcement ratios on shear behavior of concrete beams strengthened with CFRP sheets", HBRC J., 14(1), 29-36. https://doi.org/10.1016/j.hbrcj.2016.04.002
  91. Ozkilic, Y.O., Yazman, S., Aksoylu, C., Arslan, M.H. and Gemi, L. (2021), "Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening", Constr. Build. Mater., 275, 122173.
  92. Panjehpour, M., Abang Ali, A.A., Aznieta, F.N. (2014), "Energy absorption of reinforced concrete deep beams strengthened with CFRP sheet", Steel Compos. Struct., 16(5), 481-489, http://dx.doi.org/10.12989/scs.2014.16.5.481.
  93. Qin, R., Zhou, A. and Lau, D. (2017), "Effect of reinforcement ratio on the flexural performance of hybrid FRP reinforced concrete beams", Compos. Part B: Eng., 108, 200-209. https://doi.org/10.1016/j.compositesb.2016.09.054
  94. Rasheed, H.A., Larson, K.H. and Amiri, S.N. (2011), "Analytical solution of interface shear stresses in externally bonded FRP-strengthened concrete beams", J. Eng. Mech., 139(1), 18-28. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000341
  95. Sabzi, J., Esfahani, M.R., Ozbakkaloglu, T. and Farahi, B. (2020), "Effect of concrete strength and longitudinal reinforcement arrangement on the performance of reinforced concrete beams strengthened using EBR and EBROG methods", Eng. Struct., 205, 110072.
  96. Saribiyik, A., Abodan, B. and Balci, M.T. (2021), "Experimental study on shear strengthening of RC beams with basalt FRP strips using different wrapping methods", Eng. Sci. Technol., Int. J., 24(1), 192-204. https://doi.org/10.1016/j.jestch.2020.06.003
  97. Saribiyik, A. and Caglar, N. (2016), "Flexural strengthening of RC beams with low-strength concrete using GFRP and CFRP", Struct. Eng. Mech., 58(5), 825-845, http://dx.doi.org/10.12989/sem.2016.58.5.825.
  98. Sarier, Z. (2018), "Flexural behavior of gfrp reinforced hybrid beams used in different concrete grades", Civil Eng.,
  99. Sezen, H., Whittaker, A.S., Elwood, K.J. and Mosalam, K.M. (2003), "Performance of reinforced concrete buildings during the August 17, 1999 Kocaeli, Turkey earthquake, and seismic design and construction practise in Turkey", Eng. Struct., 25(1), 103-114. https://doi.org/10.1016/S0141-0296(02)00121-9
  100. Shuraim, A.B. (2011), "Efficacy of CFRP configurations for shear of RC beams: experimental and NLFE", Struct. Eng. Mech., 39(3), 361, http://dx.doi.org/10.12989/sem.2011.39.3.361.
  101. Shin, D.K., Kim, H.C. and Lee, J.J. (2014), "Numerical analysis of the damage behavior of an aluminum/CFRP hybrid beam under three point bending", Compos. Part B: Eng., 56, 397-407. https://doi.org/10.1016/j.compositesb.2013.08.030
  102. Siddika, A., Saha, K., Mahmud, M.S., Roy, S.C., Mamun, M.A.A. and Alyousef, R. (2019), "Performance and failure analysis of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete (RC) beams", SN Appl. Sci., 1(12), 1617.
  103. TBEC (2019), Turkish Building Earthquake Code, Government of Republic of Ankara, Turkey
  104. TBEC (2019), Turkish Seismic Earthquake Code
  105. TS500 (2000), Turkish Building Code, Ankara.
  106. Tucci, F. and Vedernikov, A. (2021), "Design criteria for pultruded structural elements", Encyclopedia Mater., Compos., 3, 51-68. https://doi.org/10.1016/B978-0-12-819724-0.00086-0.
  107. Tunaboyu, O., Avsar, O. (2017), "Seismic repair of captive-column damage with CFRPs in substandard RC frames", Struct. Eng. Mech., 61(1), 1-13, http://dx.doi.org/10.12989/sem.2017.61.1.001.
  108. Vedernikov, A., Minchenkov, K., Gusev, S., Sulimov, A., Zhou, P., Li, C. and Safonov, A. (2022), "Effects of the pre-consolidated materials manufacturing method on the mechanical properties of pultruded thermoplastic composites", Polymers, 14(11), 2246. https://doi.org/10.3390/polym14112246.
  109. Vedernikov, A., Safonov, A., Tucci, F., Carlone, P. and Akhatov, I. (2021), "Analysis of spring-in deformation in l-shaped profiles pultruded at different pulling speeds: mathematical simulation and experimental results", 24th International Conference on Material Forming.
  110. Xie, Q., Sinaei, H., Shariati, M., Khorami, M., Mohamad, E.T. and Bui, D.T. (2019), "An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections", Steel Compos. Struct., 30(5), 433-441, http://dx.doi.org/10.12989/scs.2019.30.5.433.
  111. Yoshitake, I., Hasegawa, H. and Shimose, K. (2020), "Monotonic and cyclic loading tests of reinforced concrete beam strengthened with bond-improved carbon fiber reinforced polymer (CFRP) rods of ultra-high modulus", Eng. Struct., 206, 110175.
  112. Yurdakul, O. and Avsar, O. (2015), "Structural repairing of damaged reinforced concrete beam-column assemblies with CFRPs", Struct. Eng. Mech., 54(3), 521-543, http://dx.doi.org/10.12989/sem.2015.54.3.521.
  113. Zhang, D., Wang, Q. and Dong, J. (2016), "Simulation study on CFRP strengthened reinforced concrete beam under four-point bending", Comput. Concr., 17(3), 407-421, http://dx.doi.org/10.12989/cac.2016.17.3.407.
  114. Zhou, C., Ren, D. and Cheng, X. (2017), "Shear-strengthening of RC continuous T-beams with spliced CFRP U-strips around bars against flange top", Struct. Eng. Mech., 64(1), 135-143, http://dx.doi.org/10.12989/sem.2017.64.1.135.
  115. Zhou, P., Li, C., Bai, Y., Dong, S., Xian, G., Vedernikov, A. and Yue, Q. (2022), "Durability study on the interlaminar shear behavior of glass-fibre reinforced polypropylene (GFRPP) bars for marine applications", Constr. Build. Mater., 349, 128694. https://doi.org/10.1016/j.conbuildmat.2022.128694.