DOI QR코드

DOI QR Code

Evaluation of Teachers and Students on VR/AR Contents in the Science Digital Textbook: Focus on the Earth and Universe Area for the 8th Grade

과학 디지털 교과서 실감형 콘텐츠에 대한 교사와 학생의 평가 -중학교 2학년 지구와 우주 영역 콘텐츠를 중심으로-

  • Received : 2022.11.17
  • Accepted : 2023.02.27
  • Published : 2023.04.30

Abstract

This study analyzed a group interview with six earth science teachers and eight middle school students to find out the evaluations and criteria they use to evaluate VR/AR contents (two virtual reality content and two augmented reality contents) in middle school science digital textbook. The study found the VR/AR contents were evaluated on four criteria as follows: VR/AR media characteristics; technical operation; user interface; and teaching-learning design. The evaluations can be summarized by each criterion. First, regarding VR/AR media characteristics, interesting features of VR/AR contents were considered relatively advantageous compared to other media like videos. However, its shortage of visual presence and inconvenience of using markers were mentioned as shortcomings. Second, in the technical operation criteria, teachers and students found the following conditions as technically challenging: failing to properly operate on a particular OS; huge volumes of contents in the application; and frequent freezing when using the application. Third, poor intuitiveness and lack of flexibility were found as negative aspects in user interface. Fourth, regarding teaching-learning design, the teachers evaluated whether the VR/AR contents delivered scientifically accurate information; whether they incorporated class goals set by teachers; and whether they can help students' inquiry. It turned out teachers gave negative feedbacks on VR/AR contents. The students evaluated VR/AR contents by assessing whether they help them with learning science but concluded they did not regard them necessary in science learning at school. Based on the findings, this study discusses which development direction VR/AR contents should take to be useful in teaching and learning science.

이 연구에서는 중학교 과학 교사 6명과 중학생 8명을 대상으로 집단 면담을 하여 중학교 과학 디지털 교과서의 실감형 콘텐츠에 대한 교사와 학생의 평가 기준 및 내용을 분석하였다. 평가 대상은 중학교 2학년 '지구와 우주' 영역에 수록된 2개의 증강현실 콘텐츠와 2개의 가상현실 콘텐츠였다. 연구 결과 교사와 학생들은 'VR/AR 매체 특성', '기술적 구동', '사용자 인터페이스', '교수-학습 설계 측면' 네 개의 평가 기준으로 실감형 콘텐츠를 평가하였다. 각 측면에서의 평가 내용은 다음과 같았다. 첫째, VR/AR 매체 특성 측면에서 실감형 콘텐츠의 신기함과 흥미로움 그리고 동영상과 같은 매체와 달리 직접 조작이 가능하다는 점은 긍정적으로 인식되었으나 시각적 실재감이 부족하고 마커 활용 부분이 부정적으로 평가되었다. 둘째, 기술적 구동 측면에서 특정 OS에서 제대로 작동되지 않는 점, 실감형 콘텐츠 앱 내 개별 콘텐츠의 용량이 크다는 점, 빈번한 앱 프리징 현상이 빈번하게 발생한다는 점이 부정적으로 평가되었다. 셋째, 낮은 직관성과 낮은 유연성으로 사용자 인터페이스 측면에서 부정적인 평가를 받았다. 넷째, 교수-학습 설계 측면에서 교사들은 콘텐츠에 과학적으로 정확한 정보가 포함되어 있는지, 학생들이 콘텐츠의 내용을 쉽게 이해할 수 있는지, 교사가 계획하는 수업 목표나 내용을 담고 있는지, 학생들의 탐구 활동에 도움이 되는지를 기준으로 실감형 콘텐츠를 평가하였으며 대체로 부정적인 평가가 많았다. 학생들은 주로 자신들의 과학 학습에 도움 여부를 기준으로 학교 과학 학습에서의 실감형 콘텐츠가 크게 필요하지 않다고 하였다. 이러한 연구 결과에 기초하여 과학 교수·학습을 위한 실감형 콘텐츠 개발 방향을 논의하고 후속 연구에 대해 제언하였다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2021R1I1A3040733).

References

  1. Akcayir, M., & Akcayir, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1-11. https://doi.org/10.1016/j.edurev.2016.11.002
  2. Alalwan, N., Cheng, L., Al-Samarraie, H. Yousef, R. Alzahrani, A. I. Sarsam, S. M. (2020). Challenges and prospects of virtual reality and augmented reality utilization among primary school teachers: A developing country perspective. Studies in Educational Evaluation, 66, 100876.
  3. Arici, F., Yildirim, P., Caliklar, S., Yilmaz, R. M. (2019). Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis. Computer & Education, 142, 103647.
  4. Barnett, M., Yamagata-Lynch, L., Keating, T., Barab, S. A., & Hay, K. E. (2005). Using virtual reality computer models to support student understanding of astronomical concepts. Journal of Computers in Mathematics and Science Teaching, 24(4), 333-356.
  5. Cha, H.-J., Yoon, H.-G., & Park, J. (2022). Elementary school teachers' perceptions and demands on the use of realistic content in science class. Journal of Korean Elementary Science Education, 41(3), 457-468. https://doi.org/10.15267/KESES.2022.41.3.457
  6. Chang, J., Park, J., & Song, J. (2019). The features of inquiry activities using technology in elementary science digital textbook - Focusing on the cases of using virtual experiment, virtual reality and augmented reality -. Journal of Korean Elementary Science Education, 38(2), 275-286. https://doi.org/10.15267/KESES.2019.38.2.275
  7. Chang R.-C., & Yu, Z.-S. (2018). Using augmented reality technologies to enhance students' engagement and achievement in science laboratories. International Journal of Distance Education Technologies, 16(4), 54-72. https://doi.org/10.4018/IJDET.2018100104
  8. Cheng, K.-H., & Tsai, C-C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22(4), 449-462.
  9. Chian, T. H. C., Yang S. J. H., Hwang, G.-I. (2014a). An augmented reality-based mobile learning system to improve students' learning achievements and motivations in natural science inquiry activities. Educational Technology & Society, 17(4), 352-365.
  10. Chian, T. H. C., Yang S. J. H., Hwang, G.-I. (2014b). Students' online interactive patterns in augmented reality-based inquiry activities. Computer & Education, 28, 97-108.
  11. Choi, S., & Kim. H.-B. (2020). Application and effects of VR-based biology class reflecting characteristics of virtual reality. Journal of the Korean Association for Science Education, 40(2), 203-216.
  12. Definition and TeAssociation for Educational Communications and Technology (2008) Definition. In A. Januszewski, & M. Molenda (Eds.), Educational technology: A definition with commentary (pp.1-14). N.Y.: Lawrence Erlbaum Associates.
  13. Department for Education (2019). Realising the potential of technology in education: A strategy for education providers and the technology industry to help improve and increase the effective use of technology in education. DFE-00072-2019. Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/791931/DfE-Education_Technology_Strategy.pdf.
  14. Dunser, A., & Hornecker, E. (2007). An observational study of children interacting with an augmented story book. In K.-c. Hui, Z. Pan, R. C.-k. Chung, C. C. L. Wang, X. Jin, S. Gobel, & E. C.-L. Li (Eds.), Technologies for e-learning and digital entertainment. Edutainment 2007 (pp.305-315). Berlin; Heidelberg: Springer.
  15. Durukan, A., Artun, H., & Temur, A. (2020). Virtual reality in science education: A descriptive review. Journal of Science Learning, 3(3), 132-142. https://doi.org/10.17509/jsl.v3i3.21906
  16. El Sayed, N. A. M., Zayed, H. H., & Sharawy, M. I. (2011). ARSC: Augmented reality student card an augmented reality solution for the education field. Computers & Education, 56(4), 1045-1061. https://doi.org/10.1016/j.compedu.2010.10.019
  17. Elor, A., Powell, M., Mahmoodi, E., Teodorescu, M., & Kurniawan, S. (2022) Gaming beyond the novelty effect of immersive virtual reality for physical rehabilitation. IEEE Transactions on Games, 14(1), 107-115. https://doi.org/10.1109/TG.2021.3069445
  18. Evans, T., & Nation, D. (1996). Educational futures: Globalisation, educational technology and lifelong learning. In T. Evans & D. Nation (Eds.), Opening education: Policies and practices from open and distance education (pp.162-176). N.Y.: Routledge.
  19. Finnish National Board of Education. (2016). New national core curriculum for basic education: Focus on school culture and integrative approach. Retrieved from https://www.oph.fi/sites/default/files/documents/newnational-core-curriculum-for-basic-education.pdf.
  20. Frokjaer, E., Hertzum, M., & Hornbaek, K. (2000). Measuring usability: Are effectiveness, efficiency, and satisfaction really correlated? CHI '00: Proceedings of the SIGCHI conference on Human Factors in Computing Systems (pp.345-352). New York, NY: Association for Computing Machinery.
  21. Han, S., & Lim, C. (2020). Research trends on augmented reality education in korea from 2008 to 2019. Journal of Educational Technology, 36(3), 505-528. https://doi.org/10.17232/KSET.36.3.505
  22. Hoh, K.-H., Jee, H.-K., Lim, S. (2010). Effect of augmented reality contents based instruction on academic achievement, interest and flow of learning. The Journal of the Korea Contents Association, 10(2), 1-13. https://doi.org/10.5392/JKCA.2010.10.2.001
  23. Holcomb, R., & Tharp, A. L. (1991). What users say about software usability. International Journal of Human-Computer Interaction, 3(1), 49-78. https://doi.org/10.1080/10447319109525996
  24. Hopp, T., & Gangadharbatla, H. (2016). Novelty effects in augmented reality advertising environments: The influence of exposure time and self-dfficacy. Journal of Current Issues & Research in Advertising, 37(2), 113-130. https://doi.org/10.1080/10641734.2016.1171179
  25. Hwang, J. I. (2019). The effects of VR experience-oriented science lesson using of digital text-books on learning motivation and academic achievement. Unpublished master's dissertation, Busan National University of Education, Busan, Republic of Korea.
  26. International Organization for Standardization. (1996). Ergonomic requirements for office work with visual display terminals (VDTs)-Part 10: Dialogue principles (ISO Standard No. 9241-10:1996). https://www. iso.org/standard/16882.html.
  27. Jang, S.-H., & Kye, B.-K. (2007). Educational application of augmented reality content. The Korea Contents Association Review, 5(2), 79-85.
  28. Kalawsky, R. S. (1999). VRUSE-a computerised diagnostic tool: For usability evaluation of virtual/synthetic environment systems. Applied Ergonomics, 30(1), 11-25. https://doi.org/10.1016/S0003-6870(98)00047-7
  29. Kamarainen, A. M., Metcalf, S., Grotzer, T., Browne, A., Mazzuca, D., Tutwiler, M. S., & Dede, C. (2013). EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Computers & Education, 68, 545-556. https://doi.org/10.1016/j.compedu.2013.02.018
  30. Kim, J.-M., & Song, S.-C. (2020). Development and application of plant ecology field trip program using 3D panorama virtual reality technique. Biology Education, 48(1), 88-98. https://doi.org/10.15717/BIOEDU.2020.48.1.88
  31. Kim, J.-p., & Lee, D.-c. (2014). Development of mobile location based service app using augmented reality. Journal of the Korea Institute of Information and Communication Engineering, 18(6), 1481-1487. https://doi.org/10.6109/jkiice.2014.18.6.1481
  32. Kim, M., Lee, J., Jeon, C., & Kim, J. A. (2017). Study on interaction of gaze-based user interface in mobile virtual reality environment. Journal of the Korea Computer Graphics Society, 23(3), 39-46.
  33. Kim, T. H., & Ko, J. W. (2019). The effects of immersive virtual reality learning on middle school students' learning outcomes. The Journal of Educational Information and Media, 25(1), 99-120.
  34. Kim, W. K., Choi, D. Y., Kwak, S. C., & Kim, H. S. (2019). The effect of learning using virtual reality technology on learning motivation. Journal of Science Education, 43(3), 271-283. https://doi.org/10.21796/JSE.2019.43.3.271
  35. Kim, Y., Lee, G. A., Jo, D., Yang, U., Kim, G., & Park, J. (2011). Analysis on virtual interaction-induced fatigue and difficulty in manipulation for interactive 3D gaming console. 2011 IEEE International Conference on Consumer Electronics (pp.269-270). IEEE.
  36. Korea Education and Research Information Service (2022). Analysis of Edutech utilization and demand in school setting: Focusing on Edutech survey results. RS 2022-01. Daegu: Korea Education and Research Information
  37. Kozhevnikov, M., Gurlitt, J. & Kozhevnikov, M. (2013). Learning relative motion concepts in immersive and non-immersive virtual environments. Journal of Science Education and Technology, 22(6), 952-962. https://doi.org/10.1007/s10956-013-9441-0
  38. Lahtevanoja, A., Holopainen, J., Vesisenaho, M., & Hakkinen, P. (2021). Developing design knowledge and a conceptual model for virtual reality learning environments. In G. Akcayir & C. Demmans Epp (Eds.), Designing, deploying, and evaluating virtual and augmented reality in education (pp.100-123). Hershey, PA: IGI Global.
  39. LearnPlatform (2020). 2020 EdTech Top 40: Special COVID19 Edition. Retrieved from https://learnplatform.com/s/EdTech-Insights-2020-EdTech-Top-40-School-Year-Report.pdf.
  40. Lee, H.-M., & Woo, W.-T. (2011). Augmented reality based user interface technology and prospect for organic interaction. Communications of the Korean Institute of Information Scientists and Engineers, 29(8), 26-30.
  41. Liou, H.-H., Yang, S. J. H., Chen, S. Y., & Tarng, W. (2017). The influences of the 2D image-based augmented reality and virtual reality on student learning. Educational Technology & Society, 20(3), 110-121.
  42. Lu, S. J., & Liu, Y. C. (2015). Integrating augmented reality technology to enhance children's learning in marine education. Environmental Education Research, 21(4), 525-541.
  43. Ministry of Education (2020). Comprehensive plan for science education: Strengthen the foundations, enjoy the cutting edge, and lead the future [2020-2024]. Sejong: Ministry of Education.
  44. Ministry of Education (2021). A Better Future, Education for All, Main facts of the general guideline draft for the 2022 Revised National Curriculum. Sejong: Ministry of Education.
  45. Ministry of Education & Korea Education and Research Information Service. (2021). The guide to the use of digital textbook in 2021. Daegu: Korea Education and Research Information Service.
  46. Ministry of Education of the People's Republic of China (2018). Action plan for educational informatization 2.0. Retrieved from http://www.moe.gov.cn/srcsite/A16/s3342/201804/t20180425_334188.html.
  47. Munoz-Cristobal, J. A., Jorrin-Abellan, I. M., Asensio-Perez, J. I., Martinez-Mones, A., Prieto, L. P., & Dimitriadis, Y. (2014). Supporting teacher orchestration in ubiquitous learning environments: A study in primary education. IEEE Transactions on Learning Technologies, 8(1), 83-97.
  48. Munoz-Cristobal, J. A., Prieto, L. P., Asensio-Perez, J. I., & Martinez-Mones, A. (2015). Coming down to earth: Helping teachers use 3D virtual worlds in across-spaces learning situations. Educational Technology & Society, 18(1), 13-26.
  49. Nassar, V. (2012). Common criteria for usability review. Work, 41, 1053-1057. https://doi.org/10.3233/WOR-2012-0282-1053
  50. NGSS Lead States (2013). Next Generation Science Standards: For States, by States. Washington DC: The National Academies Press.
  51. Ogawa, E. (2007). "Innovation 25" Plan in Japan. Internation conference on the The Lisbon Strategy in a Knowledge Society without Borders, The Institute for International and Strategic Studies, 135-154.
  52. Park, J. (2021) Development of augmented reality experimental materials to visualize standing waves in a resonance tube. New Physics: Sae Mulli, 71(8), 673-682. https://doi.org/10.3938/NPSM.71.673
  53. Park, K. S., & Lim, C. H. (1999). A structured methodology for comparative evaluation of user interface designs using usability criteria and measures. International Journal of Industrial Ergonomics, 23(5), 379-389. https://doi.org/10.1016/S0169-8141(97)00059-0
  54. Ravden, S., & Johnson, G. (1989). Evaluating usability of human-computer interfaces: A practical method. N.Y.: Halsted Press.
  55. Salmi, H., Thuneberg, H. & Vainikainen, M. P. (2017). Making the invisible observable by augmented reality in informal science education context. International Journal of Science Education, Part B, 7(3), 253-268. https://doi.org/10.1080/21548455.2016.1254358
  56. Shelton, B. E. (2003). How augmented reality helps students learn dynamic spatial relationships. Unpublished Doctoral Dissertation, University of Washington, Seattle, USA.
  57. Shin, S., Noh, T., & Lee, J. (2020). An exploration of learning environment for promoting conceptual understanding, immersion and situational interest in small group learning using augmented reality. Journal of the Korean Chemical Society, 64(6), 360-370.
  58. Shneiderman, B., Plaisant, C., Cohen, M., & Jacobs, S. (2009). Designing the user interface: Strategies for effective human-computer interaction. Boston: Addison Wesley.
  59. Southwick, S. (2020). EdTech Industry Analysis & Trends. Retrieved from https://www.toptal.com/finance/market-research-analysts/edtech-trends-2020.
  60. The Royal Society (2014). The vision for science and mathematics education. The Royal Society Science Policy Centre report 01/14. Retrieved from royalsociety.org/vision.
  61. Tsichouridis, C., Batsila, M., Vavougios, D., & Ioannidis, G. (2020). Virtual and augmented reality in science teaching and learning. In M. E. Auer, H. Hortsch, P. Sethakul (Eds), The impact of the 4th industrial revolution on engineering education. Proceedings of the 22nd international conference on interactive collaborative learning (ICL2019) - Volume 1 (pp.193-205). Cham: Springer.
  62. Won, M. J., Lee, E. C., & Whang, M.-C. (2013). Realistic expression factor to visual presence of virtual avatar in eye reflection. The Journal of the Korea Contents Association, 13(7), 9-15.
  63. Wu, H.-K., Lee, S. W.-Y., Chang, H.-Y., Liang, J.-C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 41-49. https://doi.org/10.1016/j.compedu.2012.10.024
  64. Zhang, J., Sung, Y. T., Hou, H. T., & Chang, K. E. (2014). The development and evaluation of an augmented reality-based armillary sphere for astronomical observation instruction. Computers & Education, 73, 178-188. https://doi.org/10.1016/j.compedu.2014.01.003
  65. Zarraonandia, T., Aedo, I., Diaz, P., & Montero, A. (2013). An augmented lecture feedback system for supporting learner and teacher communication. British Journal of Educational Technology, 44(4), 616-628. https://doi.org/10.1111/bjet.12047