DOI QR코드

DOI QR Code

Ginsenoside F2 enhances glucose metabolism by modulating insulin signal transduction in human hepatocarcinoma cells

  • Shengqiang Han (Institute of Translational Medicine, Medical College, Yangzhou University) ;
  • Long You (Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University) ;
  • Yeye Hu (School of Life Sciences, Huaiyin Normal University) ;
  • Shuai Wei (College of Food Science and Technology, Guangdong Ocean University) ;
  • Tingwu Liu (School of Life Sciences, Huaiyin Normal University) ;
  • Jae Youl Cho (Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University) ;
  • Weicheng Hu (Institute of Translational Medicine, Medical College, Yangzhou University)
  • 투고 : 2022.08.05
  • 심사 : 2022.10.11
  • 발행 : 2023.05.01

초록

Background: Ginsenoside F2 (GF2), a minor component of Panax ginseng, has been reported to possess a wide variety of pharmacological activities. However, its effects on glucose metabolism have not yet been reported. Here, we investigated the underlying signaling pathways involved in its effects on hepatic glucose. Methods: HepG2 cells were used to establish insulin-resistant (IR) model and treated with GF2. Cell viability and glucose uptake-related genes were also examined by real-time PCR and immunoblots. Results: Cell viability assays showed that GF2 up to 50 μM did not affect normal and IR-HepG2 cell viability. GF2 reduced oxidative stress by inhibiting phosphorylation of the mitogen-activated protein kinases (MAPK) signaling components such as c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 MAPK, and reducing the nuclear translocation of NF-κB. Furthermore, GF2 activated PI3K/AKT signaling, upregulated the levels of glucose transporter 2 (GLUT-2) and GLUT-4 in IR-HepG2 cells, and promoted glucose absorption. At the same time, GF2 reduced phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression as well as inhibiting gluconeogenesis. Conclusion: Overall, GF2 improved glucose metabolism disorders by reducing cellular oxidative stress in IR-HepG2 cells via MAPK signaling, participating in the PI3K/AKT/GSK-3β signaling pathway, promoting glycogen synthesis, and inhibiting gluconeogenesis.

키워드

과제정보

This study was financially supported by Natural Science Foundation of Jiangsu Province (BK20201480) and Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (19KJA150003).

참고문헌

  1. Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine 2010;38:602-6. https://doi.org/10.1016/j.mpmed.2010.08.007. 
  2. Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 2020;16:377-90. https://doi.org/10.1038/s41581-020-0278-5. 
  3. Goyal Y, Verma AK, Bhatt D, Rahmani AH. Yasheshwar, Dev K. Diabetes: perspective and challenges in modern era. Gene Reports 2020;20:1-6. https://doi.org/10.1016/j.genrep.2020.100759. 
  4. Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol 2020;16:349-62. https://doi.org/10.1038/s41574-020-0355-7. 
  5. Cao Z, Zeng Z, Wang B, Liu C, Liu C, Wang Z, et al. Identification of potential bioactive compounds and mechanisms of GegenQinlian decoction on improving insulin resistance in adipose, liver, and muscle tissue by integrating system pharmacology and bioinformatics analysis. J Ethnopharmacol 2021;113289:264. https://doi.org/10.1016/j.jep.2020.113289. 
  6. Dong K, Ni H, Wu M, Tang Z, Halim M, Shi D. ROS-mediated glucose metabolic reprogram induces insulin resistance in type 2 diabetes. Biochem Biophys Res Commun 2016;476:204-11. https://doi.org/10.1016/j.bbrc.2016.05.087. 
  7. Huang X, Liu G, Guo J, Su ZQ. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 2018;14:1483-96. https://doi.org/10.7150/ijbs.27173. 
  8. Haeusler RA, Mcgraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol 2018;19:31-44. https://doi.org/10.1038/nrm.2017.89. 
  9. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001;414:799-806. https://doi.org/10.1038/414799a. 
  10. Song J jia, Wang Q, Du M, Chen B, Mao X ying. Peptide IPPKKNQDKTE ameliorates insulin resistance in HepG2 cells via blocking ROS-mediated MAPK signaling. J Funct Foods 2017;31:287-94. https://doi.org/10.1016/j.jff.2017.02.005. 
  11. Yousef LF, Bernards MA. In vitro metabolism of ginsenosides by the ginseng root pathogen Pythium irregulare. Phytochemistry 2006;67:1740-9. https://doi.org/10.1016/j.phytochem.2005.06.030. 
  12. Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front Pharmacol 2018;9:1-14. https://doi.org/10.3389/fphar.2018.00423. 
  13. Zhou P, Xie W, He S, Sun Y, Meng X, Sun G, et al. Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis. Cells 2019;8:1-18. https://doi.org/10.3390/cells8030204. 
  14. Dai S, Hong Y, Xu J, Lin Y, Si Q, Gu X. Ginsenoside Rb2 promotes glucose metabolism and attenuates fat accumulation via AKT-dependent mechanisms. Biomed Pharmacother 2018;100:93-100. https://doi.org/10.1016/j.biopha.2018.01.111. 
  15. Meng F, Su X, Li W, Zheng Y. Ginsenoside Rb3 strengthens the hypoglycemic effect through AMPK for inhibition of hepatic gluconeogenesis. Exp Ther Med 2017;13:2551-7. https://doi.org/10.3892/etm.2017.4280. 
  16. Shao JW, Jiang JL, Zou JJ, Yang MY, Chen FM, Zhang YJ, et al. Therapeutic potential of ginsenosides on diabetes: from hypoglycemic mechanism to clinical trials. J Funct Foods 2020;103630:64. https://doi.org/10.1016/j.jff.2019.103630. 
  17. Zhou J, Zhang J, Li J, Guan Y, Shen T, Li F, et al. Ginsenoside F2 suppresses adipogenesis in 3T3-L1 cells and obesity in mice via the AMPK pathway. J Agric Food Chem 2021;69:9299-312. https://doi.org/10.1021/acs.jafc.1c03420. 
  18. Wang J, Wu T, Fang L, Liu C, Liu X, Li H, et al. Peptides from walnut (Juglans mandshurica Maxim.) protect hepatic HepG2 cells from high glucose-induced insulin resistance and oxidative stress. Food Funct 2020;11:8112-21. https://doi.org/10.1039/d0fo01753a. 
  19. Zou C, Wang Y, Shen Z. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J Biochem Biophys Methods 2005;64:207-15. https://doi.org/10.1016/j.jbbm.2005.08.001. 
  20. Hu W, Wang X, Wu L, Shen T, Ji L, Zhao X, et al. Apigenin-7-O-β-d-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock. Food Funct 2016;7:1002-13. https://doi.org/10.1039/c5fo01212k. 
  21. Kang S, Tsai LTY, Rosen ED. Nuclear mechanisms of insulin resistance. Trends Cell Biol 2016;26:341-51. https://doi.org/10.1016/j.tcb.2016.01.002. 
  22. Wondmkun YT. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes Metab Syndr Obes 2020;13:3611-6. https://doi.org/10.2147/DMSO.S275898. 
  23. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002;23:599-622. https://doi.org/10.1210/er.2001-0039. 
  24. Chen CC, Kuo CH, Leu YL, Wang SH. Corylin reduces obesity and insulin resistance and promotes adipose tissue browning through SIRT-1 and β3-AR activation. Pharmacol Res 2021;105291:164. https://doi.org/10.1016/j.phrs.2020.105291. 
  25. Liu M, Wang L, Li X, Wu Y, Yin F, Liu J. Trilobatin ameliorates insulin resistance through IRS-AKT-GLUT4 signaling pathway in C2C12 myotubes and ob/ob mice. Chinese Med (United Kingdom) 2020;15:1-13. https://doi.org/10.1186/s13020-020-00390-2. 
  26. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006;440:944-8. https://doi.org/10.1038/nature04634. 
  27. Ceriello A. Russo P dello, Amstad P, Cerutti P. High glucose induces antioxidant enzymes in human endothelial cells in culture: evidence linking hyperglycemia and oxidative stress. Diabetes 1996;45:471-7. https://doi.org/10.2337/diab.45.4.471. 
  28. Rizwan H, Pal S, Sabnam S, Pal A. High glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytes. Life Sci 2020;117148:241. https://doi.org/10.1016/j.lfs.2019.117148. 
  29. Cordero-Herrera I, Ma Martin, Goya L, Ramos S. Cocoa flavonoids attenuate high glucose-induced insulin signalling blockade and modulate glucose uptake and production in human HepG2 cells. Food Chem Toxicol 2014;64:10-9. https://doi.org/10.1016/j.fct.2013.11.014. 
  30. Xia T, Duan W, Zhang Z, Fang B, Zhang B, Xu B, et al. Polyphenol-rich extract of Zhenjiang aromatic vinegar ameliorates high glucose-induced insulin resistance by regulating JNK-IRS-1 and PI3K/Akt signaling pathways. Food Chem 2021;127513:335. https://doi.org/10.1016/j.foodchem.2020.127513. 
  31. Qi Y, Zhang Z, Liu S, Aluo Z, Zhang L, Yu L, et al. Zinc supplementation alleviates lipid and glucose metabolic disorders induced by a high-fat diet. J Agric Food Chem 2020;68:5189-200. https://doi.org/10.1021/acs.jafc.0c01103. 
  32. Rui L. Energy metabolism in the liver. Compr Physiol 2014;4:177-97. https://doi.org/10.1002/cphy.c130024. 
  33. Radziuk J, Pye S. Hepatic glucose uptake, gluconeogenesis and the regulation of glycogen synthesis. Diabetes Metab Res Rev 2001;17:250-72. https://doi.org/10.1002/dmrr.217. 
  34. Lee OH, Lee HH, Kim JH, Lee BY. Effect of ginsenosides Rg3 and Re on glucose transport in mature 3T3-L1 adipocytes. Phyther Res 2011;25:768-73. https://doi.org/10.1002/ptr.3322. 
  35. Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metab 2007;5:237-52. https://doi.org/10.1016/j.cmet.2007.03.006. 
  36. Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia 2015;58:221-32. https://doi.org/10.1007/s00125-014-3451-1. 
  37. Auten RL, Davis JM. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res 2009;66:121-7. https://doi.org/10.1203/PDR.0b013e3181a9eafb. 
  38. Yu T, Jhun BS, Yoon Y. High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid Redox Signaling 2011;14:425-37.  https://doi.org/10.1089/ars.2010.3284
  39. Huang Q, Chen L, Teng H, Song H, Wu X, Xu M. Phenolic compounds ameliorate the glucose uptake in HepG2 cells' insulin resistance via activating AMPK: anti-diabetic effect of phenolic compounds in HepG2 cells. J Funct Foods 2015;19:487-94. https://doi.org/10.1016/j.jff.2015.09.020. 
  40. Xu J, Ma M, Purcell WM. Characterisation of some cytotoxic endpoints using rat liver and HepG2 spheroids as in vitro models and their application in hepatotoxicity studies. I. Glucose metabolism and enzyme release as cytotoxic markers. Toxicol Appl Pharmacol 2003;189:100-11. https://doi.org/10.1016/S0041-008X(03)00089-9. 
  41. Gawel S, Wardas M, Niedworok E, Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek 2004;57:453-5. 
  42. Sowers JR, Frohlich ED. Insulin and insulin resistance: impact on blood pressure and cardiovascular disease. Med Clin North Am 2004;88:63-82. https://doi.org/10.1016/S0025-7125(03)00128-7. 
  43. Kahn BB, Flier JS. On diabetes : insulin resistance obesity and insulin resistance. J Clin Invest 2000;106:473-81.  https://doi.org/10.1172/JCI10842
  44. Beddow SA, Gattu AK, Vatner DF, Paolella L, Alqarzaee A, Tashkandi N, et al. PEPCK1 antisense oligonucleotide prevents adiposity and impairs hepatic glycogen synthesis in high-fat male fed rats. Endocrinology 2019;160:205-19. https://doi.org/10.1210/en.2018-00630. 
  45. Welsh GI, Wilson C, Proud CG. GSK3: a SHAGGY frog story. Trends Cell Biol 1996;6:274-9. https://doi.org/10.1016/0962-8924(96)10023-4. 
  46. Exton JH, Park CR. Control of gluconeogenesis in liver. J Biol Chem 1967;242:2622-36. https://doi.org/10.1016/s0021-9258(18)99617-1. 
  47. Hatting M, Tavares CDJ, Sharabi K, Rines AK, Puigserver P. Insulin regulation of gluconeogenesis. Ann N Y Acad Sci 2018;1411:21-35. https://doi.org/10.1111/nyas.13435. 
  48. Hems R, Ross BD, Berry MN, Krebs HA. Gluconeogenesis in the perfused rat liver. Biochem J 1966;101:284-92. https://doi.org/10.1042/bj1010284. 
  49. Baki L, Shioi J, Wen P, Shao Z, Schwarzman A, Gama-Sosa M, et al. PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations. EMBO J 2004;23:2586-96. https://doi.org/10.1038/sj.emboj.7600251. 
  50. Duda P, Akula SM, Abrams SL, Steelman LS, Martelli AM, Cocco L, et al. Targeting GSK3 and associated signaling pathways involved in cancer. Cells 2020;1110:9. https://doi.org/10.3390/cells9051110. 
  51. Kuai M, Li Y, Sun X, Ma Z, Lin C, Jing Y, et al. A novel formula Sang-Tong-Jian improves glycometabolism and ameliorates insulin resistance by activating PI3K/AKT pathway in type 2 diabetic KKAy mice. Biomed Pharmacother 2016;84:1585-94. https://doi.org/10.1016/j.biopha.2016.10.101. 
  52. Ning C, Wang X, Gao S, Mu J, Wang Y, Liu S, et al. Chicory inulin ameliorates type 2 diabetes mellitus and suppresses JNK and MAPK pathways in vivo and in vitro. Mol Nutr Food Res 2017;61:1-30. https://doi.org/10.1002/mnfr.201600673. 
  53. Rendra E, Riabov V, Mossel DM, Sevastyanova T, Harmsen MC, Kzhyshkowska J. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 2019;224:242-53. https://doi.org/10.1016/j.imbio.2018.11.010. 
  54. Yu T, Yang Q, Tian F, Chang H, Hu Z, Yu B, et al. Glycometabolism regulates hepatitis C virus release. PLoS Pathog 2021;17:1-22. https://doi.org/10.1371/journal.ppat.1009746.