DOI QR코드

DOI QR Code

MACWILLIAMS-TYPE IDENTITIES ON VECTORIAL BOOLEAN FUNCTIONS WITH BENT COMPONENTS AND APPLICATIONS

  • 투고 : 2021.05.10
  • 심사 : 2023.03.02
  • 발행 : 2023.05.31

초록

In this paper, we focus on establishing the MacWilliams-type identities on vectorial Boolean functions with bent component functions. As their applications, we provide a bound for the non-existence of vectorial dual-bent functions with prescribed minimum degree, and several Gleason-type theorems are presented as well.

키워드

과제정보

We express our gratitude to the reviewer for his/her very helpful comments, which lead to improvement of the exposition of this paper.

참고문헌

  1. C. Carlet, Boolean functions for cryptography and error correcting codes, in Boolean Models and Methods in Mathematics, Computer Science, and Engineering, P. L. Hammer and Y. Crama, Eds. Cambridge, U.K.: Cambridge Univ. Press, 2010. 
  2. C. Carlet, Vectorial Boolean functions for cryptography, in Boolean Models and Methods in Mathematics, Computer Science, and Engineering, P. L. Hammer and Y. Crama, Eds. Cambridge, U.K.: Cambridge Univ. Press, 2010. 
  3. C. Carlet, L. E. Danielsen, M. G. Parker, and P. Sole, Self-dual bent functions, Int. J. Inf. Coding Theory 1 (2010), no. 4, 384-399. https://doi.org/10.1504/IJICOT.2010.032864 
  4. C. Carlet and S. Mesnager, On the construction of bent vectorial functions, Int. J. Inf. Coding Theory 1 (2010), no. 2, 133-148. https://doi.org/10.1504/IJICOT.2010.032131 
  5. C. Carlet and S. Mesnager, Four decades of research on bent functions, Des. Codes Cryptogr. 78 (2016), no. 1, 5-50. https://doi.org/10.1007/s10623-015-0145-8 
  6. A. Cesmelioglu, W. Meidl, and A. Pott, Vectorial bent functions and their duals, Linear Algebra Appl. 548 (2018), 305-320. https://doi.org/10.1016/j.laa.2018.03.016 
  7. J. Y. Hyun, Generalized MacWilliams identities and their applications to perfect binary codes, Des. Codes Cryptogr. 50 (2009), no. 2, 173-185. https://doi.org/10.1007/s10623-008-9222-6 
  8. J. Y. Hyun, H. Lee, and Y. Lee, MacWilliams duality and a Gleason-type theorem on self-dual bent functions, Des. Codes Cryptogr. 63 (2012), no. 3, 295-304. https://doi.org/10.1007/s10623-011-9554-5 
  9. J. Y. Hyun, H. Lee, and Y. Lee, Boolean functions with MacWilliams duality, Des. Codes Cryptogr. 72 (2014), no. 2, 273-287. https://doi.org/10.1007/s10623-012-9762-7 
  10. F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. II, North-Holland Mathematical Library, Vol. 16, North-Holland, Amsterdam, 1977. 
  11. Q. S. Meng, H. Zhang, M. Yang, and J. Cui, On the degree of homogeneous bent functions, Discrete Appl. Math. 155 (2007), no. 5, 665-669. https://doi.org/10.1016/j.dam.2006.10.008 
  12. S. Mesnager, Bent Functions, Springer, 2016. https://doi.org/10.1007/978-3-319-32595-8 
  13. K. Nyberg, Perfect nonlinear S-boxes, in Advances in cryptology-EUROCRYPT '91 (Brighton, 1991), 378-386, Lecture Notes in Comput. Sci., 547, Springer, Berlin, 1991. https://doi.org/10.1007/3-540-46416-6_32 
  14. K. Nyberg and M. Hermelin, Multidimensional Walsh Transform and a Characterization of Bent Functions, In Tor Helleseth, P.V.K., Ytrehus, O., eds.: Proceedings of the 2007 IEEE Information Theory Workshop on Information Theory for Wireless Networks. IEEE 83-86, 2007. 
  15. O. S. Rothaus, On "bent" functions, J. Combin. Theory Ser. A 20 (1976), no. 3, 300-305. https://doi.org/10.1016/0097-3165(76)90024-8 
  16. P. Stanica and S. Maitra, Rotation symmetric Boolean functions-count and cryptographic properties, Discrete Appl. Math. 156 (2008), no. 10, 1567-1580. https://doi.org/10.1016/j.dam.2007.04.029 
  17. T. B. Xia, J. Seberry, J. Pieprzyk, and C. Charnes, Homogeneous bent functions of degree n in 2n variables do not exist for n > 3, Discrete Appl. Math. 142 (2004), no. 1-3, 127-132. https://doi.org/10.1016/j.dam.2004.02.006