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ON RECURSIONS FOR MOMENTS OF A COMPOUND
RANDOM VARIABLE: AN APPROACH USING AN
AUXILIARY COUNTING RANDOM VARIABLE

Yoora KiM*

ABSTRACT. We present an identity on moments of a compound random
variable by using an auxiliary counting random variable. Based on this
identity, we develop a new recurrence formula for obtaining the raw and
central moments of any order for a given compound random variable.

1. Introduction

Let {X;,i = 1,2,3,...} be a sequence of independent and identically dis-
tributed random variables. We denote by X the generic random variable for Xj.
Let N be a non-negative integer-valued random variable. We assume that
{X;,i =1,2,3,...} and N are independent. A compound random variable,
denoted by Sy, is defined as

Sn=X1+Xo+---+Xn.

In the case where N = 0, it is defined as Sy = 0 by convention.

Compound random variables are extensions of random sums, which have been
a classical focus in probability theory, encompassing fundamental concepts such
as the central limit theorem and the law of large numbers [5, 6]. Moreover,
compound random variables have gained significant attention in various practi-
cal domains, including insurance mathematics, risk management, and reliability
(see [16] and the references therein). For example, in collective risk theory, it
has been applied in a manner that N counts the number of claims arising from
a portfolio during a certain period, X; measures the amount of the ith of these
claims, and Sy then represents the aggregate claims of the portfolio [7]. In
accordance with this application, IV is often called a counting random variable,
whereas X a severity random variable.
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In this paper, we study the problem of obtaining the moments of a compound
random variable. In particular, the purpose of this paper is to develop recur-
rence formulas for obtaining the moments of any order for a given compound
random variable. As a sort of moment, we consider both the raw and the central
moments because they can provide detailed information about the shape of a
probability distribution. Moreover, we focus on a recurrence form of formulas
because it can be efficient from a computational point of view when obtaining
higher-order moments. To achieve this objective, we propose an approach that
utilizes an auxiliary counting random variable N derived from N. The proposed
approach yields a new recurrence formula in a structured form that consists of
finite terms, where each term is decomposed into three factors: (i) a constant
determined by the moments of the counting random variable N and the severity
random variable X; (ii) a binomial coefficient; and (iii) a lower-order moment
of a compound random variable. The factorized structure of our recurrence
formula can provide the advantage of further reducing computational complex-
ity. In addition, our approach introduces a new method for determining the
moments of Sy, contributing to the enrichment and complementation of the
existing understanding of compound random variables. For an explicit formula,
we can refer to [2], where Grubbstrom and Tang presented a closed-form for-
mula for the moments of Sy, provided that the severity random variable X is
non-negative.

The rest of the paper is organized as follows. In Section 2, we first overview
a list of related works and clarify the difference with this work. In Section 3,
we then present a main theorem, from which we obtain a recurrence formula
for the raw moment of Sy in Section 4 and the one for the central moment in
Section 5. The proof of the main theorem is given in Section 6. Finally, we
conclude the paper in Section 7.

2. Related Works

There have been extensive studies on the moments of a compound random
variable. A variety of analytic formulas have been presented in a closed or
recurrent form. In deriving recurrence formulas, existing works often assume
that the counting random variable N belongs to a special family. De Pril [1]
and Sundt [15] considered a class of counting random variables satisfying

b
(1) P(N:n):(a—l—)IE”(N:n—l), n=1,23,...,
n
for some constants ¢ < 1 and b such that a +b > 0. This family of counting

distributions is referred to as Panjer’s class [10]. Murat and Szynal [9] and
Murat [7] considered a more broadened Panjer’s class in which NV satisfies

(2) P(N_n)—<a+nic>IP(N_n—l), n=1,23,...,
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for some constants a, b, and c¢. Hesselager [3] generalized the Panjer’s class to
the one in which the ratio between successive probabilities on N can be written
as

k i
(3) P(N:n):MP(N:n—l), n=1,2,3,...,
Zi:O bl'TLZ
for some integer k and constants a; and b; (i = 0,1,...,k).

The equations (1), (2), and (3) are of a first-order recursion. Schroter [12]
considered a second-order recursion given by

P(N =n) = <a+b>IF’(Nn1)+CIP’(Nn2), n=1,23,...,
n n

for some constants a < 1, b, and ¢ with P(N = —1) = 0. Sundt [14], Murat
and Szynal [8], and Murat [7] generalized the second-order recursion in (4) to a
kth-order recursion given by

k
(5) P(Nzn)zZ(ai—kl;i)IP’(N:n—i), n=1,23,...,

=1

for some integer k and constants a; and b; (i = 1,2,...,k) with P(N =n) =0
for n < 0. Sundt [15] further extended the kth-order recursion in (5) as

k

b; .

]P’(N:n):E (ai+>P(N=n—Z)7 n=r+1r+2,r+3,...,

n
i=1

for some positive integer 7.

As such, existing works are often based on the assumption that the counting
random variable N of Sy belongs to a specific class. In this paper, we propose
a different approach by introducing an auxiliary random variable N derived
from N. Our work is motivated by [11] where a secondary random variable M,
called a size-biased version of N, is exploited to obtain a recurrence formula
for the probability mass function of Sy, provided that the severity random
variable X takes on positive integer values.

Recently, Kim and Kim [4] developed a recurrence formula for higher-order
moments of a compound random variable Sy when N follows a Binomial dis-
tribution. Seong [13] extended the result in [4] by including it as a special case.
In this paper, we further extend the result in [13] by providing a more compu-
tationally efficient result that uses the sum of finite terms, where each term is
decomposed into three factors under a regular structure. In addition, we also
provide a recurrence formula for the moments of N as a by-product of our main
result.
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3. Preliminary Analysis

In this section, we perform a preliminary analysis with the aim of developing
recurrence formulas for the moments of Sy. To begin, let N be a random vari-
able that takes on non-negative integer values. We assume that the distribution
of N is determined by that of N as follows:

(6) IP(N:TL):(n—l—1)]1371}3(;37\]]:n—|—1)7

n=0,1,2,....

Below we give examples of N for well-known counting random variables N [11,
13].

Example 3.1. Let N be a Poisson random variable with parameter A. Since
P(N =n) =e*A\"/n!(n=0,1,2,...) and E[N] = A, the relation (6) gives rise

to the probability mass function of N as

n+1 e AAntl

BN =n) ==~ %51
—A\n
R
n!

That is, N also follows a Poisson distribution with parameter \.

Example 3.2. Let N be a Binomial random variable with parameters (m, p).
Since P(N = n) = (Zl)p"(l —p)™ " (n = 0,1,...,m) and E[N] = mp, the
relation (6) gives rise to the probability mass function of N as

~ n+1 m
P(N = — . n+1 1— m—n—1
(N =n) p <n+1>p (1-p)
n+1 m!

B mp (n+1D!(m—n-— 1)!]7”“(1 -
(m—1)!

_ n _ m—n—1
nl(m—n— 1)!p (1-p)

—1
(m )p”(l—p)mln, n=0,1,...,m—1.
n

That is, N follows a Binomial distribution with parameters (m — 1, p).

Example 3.3. Let N be a negative Binomial random variable with parameters
(m,p). Since P(N = n) = ("7 ")p™(1 —p)"(n = 0,1,2,...) and E[N] =

n
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m(1 — p)/p, the relation (6) gives rise to the probability mass function of N as

- n+1 n+m\ ,, n
P(N:n)ZM'(n+1)P (1—p)"*
_ n+1 (n+m)! (L=

m(l—p)/p . (n+1)I(m —1)!
(n+m)!

= WP (1-p)"

- <”+m>pm+1(1p)”, n=0,12,....
n

That is, N follows a negative Binomial distribution with parameters (m—+1,p).

We assume that the random variable N is independent of { X;,i =1,2,3,...}.
Then, the sum S5 = X; + Xp + --- + X forms another compound random
variable which is independent of Sy. In the following theorem, we present a
relation between the moments of S and Sg about points ¢ and ¢, respectively.

Theorem 3.1. For any c,¢ € R, we have
(7)
k
]E[(SN—C)’“H]:Zci(;)E[(SN—E)k]—cIE[(SN—c)k], k=0.1,2,...
i=0

where ¢; is a constant that is determined by the moments of the counting random
variable N and the severity random variable X as

(8) ¢i = E[N] Z:; (;) (&= o) E[X1],

Proof. The proof is given in Section 6. O

4. Raw Moments

In this section, we derive a recurrence formula for the raw moments of Sy.
We then give examples of how our formula can be used.
Theorem 4.1. The raw moments of Sy can be obtained by

k

E[(Sy)"] = Zai (lz)E[(sﬁ)k—i}, k=0,1,2,...,

i=0
where a; 1s given by
a; = E[N]E[X ).

Proof. Substituting ¢ = ¢ = 0 in Theorem 3.1 gives Theorem 4.1. O
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We note that Theorem 4.1 corresponds to Theorem 1 of [13] in its funda-
mental aspects. However, the distinction lies in the structure of the recurrence
formula expressed in Theorem 4.1, which decomposes each term into three regu-
lar factors: (i) a constant a; determined by the moments of the counting random
variable N and the severity random variable X; (ii) a binomial coefficient (k)

and (iil) a lower-order raw moment of a compound random variable, E[(S5)*~].

The difference and benefit of this factorization become more apparent in The-
orem 5.1, where we derive a recurrence formula for the central moments of Sy.

Example 4.1. Suppose that N follows a Poisson distribution with parameter A.
Then, N also follows a Poisson distribution with parameter A as illustrated in
Example 3.1. Accordingly, to simplify notation, we denote by uj the kth raw
moment of the compound Poisson random variables Sy and Sg, i.e.,

k= E[(Sn)"] =E[(Sg)"].
From Theorem 4.1, we obtain
"k
9) HE4+1 = ;ai <Z.),Uki7
where a; is given by
(10) a; = AE[X 1.

With the initial value po = 1, we can find p (k = 1,2,3,...) sequentially using
(9) and (10). For example, the first three raw moments of Sy are

0
p = ap (0>M0 = AE[X],

1 1 2 2 2
U = ag 0 H1 + ay 1 /J/Q:)\E[X]“_)\ E[X],

3 = ag (5) po + a G) p + as @) o = AE[X?] + 3N’E[X|E[X?] + M E[X]>.

Example 4.2. Suppose that N follows a Binomial distribution with parame-
ters (m, p). Then, N also follows a Binomial distribution, but with parameters
(m — 1,p) as shown in Example 3.2. Accordingly, we denote by u(m,p) and
ur(m — 1,p) the kth raw moments of the compound Binomial random vari-
ables Sy and S, respectively, i.e.,

Mk<m7p) = ]E[(SN)kL
pi(m —1,p) = E[(S5)"].
From Theorem 4.1, we obtain

k
(11) /j/k-‘rl m p Zal< )/J’k i - 1ap)7
1=



MOMENTS OF A COMPOUND RANDOM VARIABLE 337
where a; is given by
(12) a; = mpE[X ).

With the initial value po(m,p) = 1, we can find pg(m,p) (k = 1,2,3,...) se-
quentially using (11) and (12). For example, the first three raw moments of Sy
are

0
pa(m, p) = ag (0) po(m — 1, p) = mpE[X],
—_———
=1
1 1
pa(m,p) = ao| | pr(m —1,p) +ay po(m —1,p)
0/) —_——— 1) —— —
—(m—1)pB(X] =1
= mpE[X?] + m(m — 1)p°E[X]?,

patm, ) = ao (5 ) galm — 1.9) +an (3) g on ~ 1) a2 (3) oo~ 1.0)

=(m—1)pE[X?] =(m—1)pE[X] =1
+(m—1)(m—2)p°E[X]?

= mpE[X?] + 3m(m — 1)p*E[X|E[X?] + m(m — 1)(m — 2)p°E[X]>.
Example 4.3. Suppose that N follows a negative Binomial distribution with
parameters (m,p). Then, N also follows a negative Binomial distribution, but
with parameters (m + 1,p) as shown in Example 3.3. Accordingly, we denote

by ux(m,p) and ur(m + 1,p) the kth raw moments of the compound negative
Binomial random variables S and Sy, respectively, i.e.,

pre(m, p) = E[(Sn)"],
pr(m +1,p) = E[(Sx)"]-
From Theorem 4.1, we obtain
(13) furet1(m, p) = Zk:ai <k> p—i(m +1,p),
i=0 !

where a; is given by

(14) a; =m (1;73> E[X ).

With the initial value po(m,p) = 1, we can find pr(m,p) (k = 1,2,3,...) se-
quentially using (13) and (14). For example, the first three raw moments of Sy
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o) ot + 1.9) = m (=2 ) B[x],

=(m+1) (152 )E[X] =

l_p) E[X?] 4+ m(m + 1) <1_p>2E[X]27

p p

(

paim. ) = ao () gaon + 1)+ () gl + 1.9
(
(

2 2 2
pa(m =+ 1,p) +ay pa(m =+ 1,p) +as po(m +1,p)
0) ~——_——— 1) e—_—— — 2 ) e——

=(m+1)( 12 )E[x?] =(m+1)(1=2)E[X] =1
+(m+1) (m+2) (152 )’E[X]?

=m (1;p> E[X?3] + 3m(m + 1) (1;17>2 E[X|E[X?]
+m(m+1)(m+2) (?)3 E[X]3.

If the severity random variable X is degenerate with P(X = 1) = 1, then we
have Sy = N and S5 = N. Hence, from Theorem 4.1, we can obtain the raw
moments of NV as in the following corollary.

Corollary 4.2. The raw moments of N can be obtained by

k
k o
E[N*t!] = E[N E[NF k=0,1,2,....
] =By (B
Proof. We apply Theorem 4.1 for X such that P(X = 1) = 1. In this case, we
have a; = E[N]E[X"*'] = E[N] for all i. Hence, by substituting a; = E[N] and
replacing Sy and S by N and N, respectively, we have Corollary 4.2. O

5. Central Moments

In this section, we derive a recurrence formula for the central moments of Sy .
We then give examples of how our formula can be used.

Theorem 5.1. Let i = E[Sy] and i = E[Sg] denote the expectations of Sy
and Sy, respectively. Then, the central moments of Sy can be obtained by

k
E[(Sy—u)Ft] :ZbiG)E[(sﬁ—mk—ﬂ —boE[(Sn—p)*], k=0,1,2,...,
=0
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where b; is given by

bi =E[N] Y (;) (dn — 1) B[X]I B[X*17],

=0

where dy = VI‘EL[T](V]]]) is the dispersion index of N.

Proof. We substitute ¢ = pu(= E[Sy]) and ¢ = i (= E[Sg]) in Theorem 3.1.
), i.

We then denote by b; the resulting ¢; in (8), i.e.,

b = E[N ) (= p)? E[X ),
MY (1) - e
7=0
Here, the difference i — p is obtained by using Wald’s equality as

fi — p=E[Sg] — E[SN]
= E[N]E[X] — E[N]E[X]

in which E[N]—E[N] can be found by subtracting 1 from the dispersion index d
of N as follows:

n=0
=2 n(zg[jv]l) PN =n+1) - E[N]
n=0
-y (’“EINl])k P(N = k) — E[N]
k=1
= E[I]<Zk2 P(N=Fk)—> k P(Nzk)> — E[N]
k=0 k=0
= gy (EINV?) — EINT) - B
_ Var(N) 1
E[N]
=dy—1

Hence, b; is determined by the moments of N and X as

b; = E[N] Z (;) (dy — 1) E[XPE[X+17].
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Since p = E[Sn] = E[N]E[X] = by, for a coherent formulation, we express the
second term on the right-hand side of (7) as

RE[(Sy — "] = boE[(Sy — p)*].

This completes the proof of Theorem 5.1. O

We note that Theorem 5.1, similar to Theorem 4.1, presents the recurrence
formula in a structured form by decomposing each term into three regular fac-
tors: (i) a constant b; determined by the moments of the counting random vari-
able N and the severity random variable X; (ii) a binomial coefficient (’:), and
(iii) lower-order central moments of compound random variables, E[(S 5 — )"~
and E[(Sy — u)¥]. The factorized structure of our recurrence formula can sim-
plify the computation of the central moments, as demonstrated in the following
examples.

Example 5.1. Suppose that N follows a Poisson distribution with parameter A.
Then, N also follows a Poisson distribution with parameter \ as illustrated in
Example 3.1. Accordingly, to simplify notation, we denote by 7 the kth central
moment of the compound Poisson random variables Sy and Sy, i.e.,

N = E[(SN - E[SN])k] = E[(Sl\? - E[SNDk]

From Theorem 5.1, we obtain

k
k
(15) M1 = ;bi <z) Mi—i — bo M-

The dispersion index of N is dy = V]E%](\ﬁ’) = % = 1. Hence, b; becomes

(16) by = AE[X ).

With the initial value 79 = 1, we can find n, (k = 1,2, 3,...) sequentially using
(15) and (16). For example, the first three central moments of Sy are

0
11 = bo (0) 1o — bono = 0,

1 1
M2 = bo (0)771 + by (1> o — bom = AE[X?],

2 2 2
N3 = bo <0)772 + b <1) m + ba (2> Mo — b0772 = )\]E[XS]

Example 5.2. Suppose that IV follows a Binomial distribution with parameters
(m,p). Then, N follows a Binomial distribution with parameters (m — 1,p) as
shown in Example 3.2. Accordingly, we denote by nx(m,p) and ng(m — 1, p) the
kth central moments of the compound Binomial random variables Sy and Sg,
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respectively, i.e.,
mk(m,p) = E[(Sy — E[SN])*],
nk(m —1,p) = E[(Sg — E[Sg])"].

From Theorem 5.1, we obtain

(17) Nk+1(m, D) Zb ( )nk i(m —1,p) = bo i(m, p).

— Var(N) _ mp(1—p)
E[N] mp

(18) b = mpz ( ) XPE[X+173),

With the initial value no(m,p) =1, we can find nx(m,p) (k = 1,2,3,...) se-
quentially using (17) and (18). For example, if we want to find the first three
central moments of Sy, we compute a priori by, by, be using (18):

bo = mpIE[X],
by = mpE[X?] — mp?E[X]?,
by = mpE[X3] — 2mp?E[X|E[X?] + mp°E[X]>.

The dispersion index of N is dy = = 1—p. Hence, b; becomes

We then use (17) in a recursive manner as follows:

0
n(m,p) = bo (0) no(m — 1,p) —bg no(m, p) = 0,
— —

1 1
n2(m, p) = bo( ) m(m—1,p) +b1< > no(m —1,p) —bg ni(m, p)
0 N————’ 1 ———— ——

= mpE[X?] — mp°E[X]?,

2 2 2
s, p) = bo< ) na(m — 1,p) +by ( ) m(m—1,p) +b2< ) no(m — 1,p) —bo ma(m. p)
0 N———’ 1 N————’ 2 N————’ N—_——
=(m—1)pE[X?] =0 =1 =mpE[X?]
—(m—1)p’E[X]? —mp?E[X]?
= mpE[X?] — 3mp?E[X]|E[X?] + 2mp’E[X]>.

Example 5.3. Suppose that N follows a negative Binomial distribution with
parameters (m,p). Then, N follows a negative Binomial distribution with pa-
rameters (m+1, p) as shown in Example 3.3. Accordingly, we denote by 7 (m, p)
and ng(m + 1, p) the kth central moments of the compound negative Binomial
random variables Sn and Sy, respectively, i.e.,

mk(m,p) =E[(Sy — E[Sn])"],
ne(m+1,p) =E[(Sy — E[Sg))*].
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From Theorem 5.1, we obtain

k
(19) Mo+1(m, p) Z <)nkzm+1p)—bonk(mp)

The dispersion index of N is dy = VEJE](VJ\]]) = 7;11((11112)/ /p: = %. Hence, b; becomes

(20) b; = mZ% (;) (T)jHE[X]jE[X”l‘j].

With the initial value ng(m,p) = 1, we can find nx(m,p) (k = 1,2,3,...) se-
quentially using (19) and (20). For example, if we want to find the first three
central moments of Sy, we compute a priori by, by, by using (20):

bo =m <1;p> E[X],
by = m <1;p> E[X?] +m (T)QE[X]Q,

by =m (1_”> E[X?] + 2m (1_p>2E[X]]E[X2] +m (1_p>3 E[X]3.

p p

We then use (19) in a recursive manner as follows:

no(m + 1, p) —bg no(m, p) = 0,
—_——
=1 =1

1
771(m +1 p) +b1 (1) nO(m + ]-7p) 7b0 Wl(mvp)
=0 =1 =0

—m <1;p> E[X?] +m (1;1))211‘3[)(]2,

e
N————

2 2 2
n3(m,p) = bo( )nz(m + 1,p)+bl( ) nm(m+1,p) +bz< ) no(m + 1, p) —bo n2(m, p)
——— 1 ———— 2 ——— ——

=(m+1) (452 )E[X?] =0 =1 =m(1=2)E[X"]

+m+1) (352 ElX)? +m(452

=m (T’) E[X?] + 3m (1;”)2E[X]1E[X2] +2m (1;17)31E[X]3.

As noted in Section 4, we have Sy = N and Sy = N if the severity random
variable X is degenerate with P(X = 1) = 1. Hence, similarly to Corollary 4.2,
we can obtain the central moments of N as follows.

)’E[X]?
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Corollary 5.2. Let p = E[N] and p = E[N] denote the expectations of N
and N, respectively. Then, the central moments of N can be obtained by

k

B[ - ) NS (aw)’ () Bl - 9]

=0
—E[N]E[(N - p)¥], k=0,1,2,...,

where dy = Vgﬁ(\f}/) is the dispersion index of N.

Proof. We apply Theorem 5.1 for X such that P(X = 1) = 1. In this case, we
have E[X])/ = E[X**17J] =1 for all i, j. Hence, b; in Theorem 5.1 reduces to

i

EN Y (;) (dy —1)’

J=0

b;
=E
E

Hence, by substituting b; = E[N](dx)* and replacing (Sn, u) and (Sg, i) by
(N, p) and (N, p), respectively, we have Corollary 5.2. O

6. Proof of Theorem 3.1

By the linearity of expectation, we have
IE[(SN — C)kJrl] = E[(SN — C)(SN — C)k}
(21) =E[Sn(Sy — ¢)*] —cE[(Sn — ¢)"].

In the following, we complete the proof in two steps. First, we show that the
first term on the right-hand side of (21) can be written as

(22) E[S (S — "] = EINE[X(Sy + X — ¢)*],

where X is the generic random variable for X; and is independent of Sg. Second,
we show that the term on the right-hand side of (22) can be further written as

"k
@) BBy +x -] = D) Elsy - 0.

=0

where ¢; is given in (8). Combining (21), (22) and (23) then yields the theorem.
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To begin, we evaluate the expectation E [SN(SN — c)k] by conditioning on N:

oo

E[Sn(Sy —)¥] =Y P(N =n)E[Sy(Sy — ¢)* | N = n]

I
M i

P(N =n)E[Sx(Sy — )" | N = n]

[

n=

=S B(N = n)E[S,(Sn — )],

n=

=

where the second equality follows because we have defined Sy = 0 by convention,
and the third one follows from the independence of N and {X;,i =1,2,3,...}.
Since X7, Xo, X3,... are independent and identically distributed, we have

X1<§:X]’—C> gXQ(in—C) gan(zn:X]_C)’
Jj=1 j=1 j=1

where the symbol 4 denotes equal in distribution. It then follows that

E[Sn(Sn —¢)*] = (ZX)-(jZi;Xj—c>k
z Xi(ng_c)’f

=nE[X, (S, — c)k],

which, in turn, leads to

[SN SN—C i [Xn (Sn—c)k]

From (6), we have P(N =n)n = E[N][P’(N =n—1)forn=1,2,3,.... We use
this relation and then make the change of variable [ = n — 1 to obtain

E[Sn(Sy — ¢)*] = E[N] iIP’(N =n—1)E[X,(S, — ¢)*]

(24) = E[N] iP(N =) E[Xi41(Si41 — 0)*].
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Here, the expectation IE[XZH(SH_l — c)k] can be expressed as

E[X141(Sit1 — ©)F] = E[ X041 (S + Xi1 — ©)F]
=E[X141(S + X101 — ¥ | N =1]
=E[Xg.,(Sy + Xz —0)f [N =1]
(25) =E[X(Sg+X - |N=1],

where, in the second equality, the independence of N and {X;,i = 1,2,3,...}
is used. Substituting (25) into the right-hand side of (24), we have

E[Sn(Sx —¢)f] = ZIP’ X(Sg+X-of|N=1]

- E[N]IE{IE[X(SN +X - o) N]}
=E[N]E[X(Sg + X —o)*],

which shows (22).
Now we apply the Binomial expansion to the term on the right-hand side
of (22). Then, we have

E[N]E[X(Sy + X — )] = E[N]E[X({& —a (X +a- )]
[XZ( ) (X—l—c—c)k_l}

k

k 1

=E[N] ) (i)IE[(SN &' |E[X(X +¢E— )],
i=0

where the last equality comes from the independence of X and Sg. Applying

the Binomial expansion again to the factor E[X(X +c— c)k*i}, we have

E[X(X+é- )" 1] =E [X kz_: (k j_ ’) (@ - c)ij—i—j]

=0

_ kz_: <’“ . Z> (¢ — o) B[ X+,

Jj=0

Hence, the term on the right-hand side of (22) can be expressed as

(26) E[N]E[X(Sy + X — ¢)"] Zd;“ (S5 — @],

(O Yo

where dy ; is given by

<
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In order to reduce the computational complexity involved in (26), we seek to
find a simpler expression for dj ;. We note that

(b —(1) .
k+1\ ((k+1)=G+1) - i (k+1)+1—(i+1)—j
di+1,i+1 = E[NV] ]Z::o (Z 1 1) < j (e—) E[X 7]
k1 (k- : -
e ) ( | )(a P E[xM ]
- 141 J
7=0
k1R (k—i : -
_Em S () ( , )(& P E[xM]
— ¢4+ 1 \1 J
7=0
_k+1 A
Tl R
That is, the following relation holds for any successive terms dy ; and dj1,i41:
k+1 .
di41,i+1 = T “dpis i=0,1,...,k.
By induction, we have
k
d,i = T dr—1,i—1
k k-1
- T . d —2.4—
ii—1 kR
_k k-1 k-2 D
T i1 a2 T

k(k—1)(k—2)--(k—i+1) e
i(i—1)(i—2)--- (1) —u0

k
= <.)dki,0-
i

Furthermore, with d; o = ¢;, we can simplify the expression in (26) as

EINJE[X(Sg +X —o)*] =) diio (k)E[(SN -8

i

HWECEEE

ci (f)ﬂ«:[(sﬁ — &)k,

which shows (23). This completes the proof of Theorem 3.1.

=0



MOMENTS OF A COMPOUND RANDOM VARIABLE 347

7. Conclusion

In this paper, we have derived a formula for the raw and central moments
of a compound random variable by utilizing an auxiliary counting random vari-
able. This utilization allows us to derive a recurrence formula in a structured
form having three regular factors, which provides the advantage of reducing
the computational complexity involved in obtaining higher-order moments. A
potential future direction is to identify the class of counting random variables
to which our formula can be effectively applied.
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