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Single-step genomic evaluation for growth traits  
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Objective: The objective was to compare (pedigree-based) best linear unbiased prediction 
(BLUP), genomic BLUP (GBLUP), and single-step GBLUP (ssGBLUP) methods for 
genomic evaluation of growth traits in a Mexican Braunvieh cattle population.
Methods: Birth (BW), weaning (WW), and yearling weight (YW) data of a Mexican 
Braunvieh cattle population were analyzed with BLUP, GBLUP, and ssGBLUP methods. 
These methods are differentiated by the additive genetic relationship matrix included in the 
model and the animals under evaluation. The predictive ability of the model was evaluated 
using random partitions of the data in training and testing sets, consistently predicting 
about 20% of genotyped animals on all occasions. For each partition, the Pearson correlation 
coefficient between adjusted phenotypes for fixed effects and non-genetic random effects 
and the estimated breeding values (EBV) were computed.
Results: The random contemporary group (CG) effect explained about 50%, 45%, and 
35% of the phenotypic variance in BW, WW, and YW, respectively. For the three methods, 
the CG effect explained the highest proportion of the phenotypic variances (except for 
YW-GBLUP). The heritability estimate obtained with GBLUP was the lowest for BW, while 
the highest heritability was obtained with BLUP. For WW, the highest heritability estimate 
was obtained with BLUP, the estimates obtained with GBLUP and ssGBLUP were similar. 
For YW, the heritability estimates obtained with GBLUP and BLUP were similar, and the 
lowest heritability was obtained with ssGBLUP. Pearson correlation coefficients between 
adjusted phenotypes for non-genetic effects and EBVs were the highest for BLUP, followed 
by ssBLUP and GBLUP.
Conclusion: The successful implementation of genetic evaluations that include genotyped 
and non-genotyped animals in our study indicate a promising method for use in genetic 
improvement programs of Braunvieh cattle. Our findings showed that simultaneous 
evaluation of genotyped and non-genotyped animals improved prediction accuracy for 
growth traits even with a limited number of genotyped animals.

Keywords: Best Linear Unbiased Prediction (BLUP); Braunvieh; Genomic Selection; 
genomic BLUP (GBLUP); Single-step Genomic BLUP (ssGBLUP)

INTRODUCTION

Traditionally, genetic merits of individuals have been predicted estimated breeding value 
(EBV) using pedigree information [1]. Genomic information can be used to predict EBV. 
When this occurs, using genomic best linear unbiased prediction (GBLUP) [2], it is called 
genomic estimated breeding value (GEBV). Genomic selection based on single nucleotide 
polymorphisms (SNP) accelerates genetic progress by increasing the accuracy of predic-
tions, reducing generation interval, and controlling inbreeding [3].
 Nowadays, genomic evaluations are widely used in domestic animal species thanks to 
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the technological advances and a reduction in genotyping 
costs. Availability of dense SNP panels has made genome-
wide or genomic selection evaluation methods effective. Most 
of the methods for genomic evaluations are usually based on 
variants of genome-wide association studies for estimating 
the effects of markers or haplotypes. Differences among the 
approaches reside in the a priori distribution assumed for 
markers or haplotype effects [4]. However, training these 
genomic evaluation models generally requires the entire 
population to be both phenotyped and genotyped, which is 
not always true or feasible [5]. A more recent method [2] 
evaluates a population of individuals, not all of which are 
genotyped. This genomic evaluation method called the single-
step genomic BLUP (ssGBLUP) was developed by Christensen 
and Lund [6] and Aguilar et al [7]. The ssGBLUP method 
allows the inclusion of both genotyped and non-genotyped 
animals and uses pedigree and genotype information simul-
taneously. The two research teams [6,7], using different 
analytical approaches, arrived at the same formulation for 
ssGBLUP. The central idea of the method is to create an im-
proved additive genetic relationship matrix (H), from the 
pedigree-based (A) and the marker-based (G) additive ge-
netic relationship matrices. An advantage of ssGBLUP is 
that it is extendable to all forms of BLUP by simply replacing 
the A–1 matrix in BLUP [1] with the H–1 matrix, and EBVs 
are obtained for both genotyped and non-genotyped animals. 
A statistically equivalent model to ssGBLUP, which we refer 
to as ssSNPBLUP, was developed by Liu et al [8]. The model 
directly estimates marker effects, which avoids creating and 
inverting the genomic relationship matrix. Inverting the ge-
nomic relationship matrix can be challenging for a large 
number of genotyped animals. Liu et al [8] mentioned that 
the proposed method works well with populations of any 
size. Other methods equivalent to ssSNPBLUP were developed 
by Fernando et al [9,10].
 The ssGBLUP method has been widely used in both plant 
and animal breeding [11-13]. Increases in accuracy of pre-
dictions by ssGBLUP have been reported, relative to those 
obtained with BLUP and GBLUP [5,12,14]. The ssGBLUP 
method has been used in Holstein dairy cattle [15,16], Nordic 
Red dairy cattle [17], dual-purpose cattle [18], swine [12], 
turkeys [19], sheep [20,21], and goats [22]. However, to our 
knowledge the ssGBLUP method has not yet been used in 
the genetic evaluation of Braunvieh cattle.
 In Mexico, BLUP phenotype-based genetic evaluations of 
Braunvieh cattle are performed on a regular basis [23]. The 
objective of this study was to compare ssGBLUP, BLUP, and 
GBLUP, using phenotypic records for growth traits of a 
Mexican Braunvieh cattle population.

MATERIALS AND METHODS

Animals
Phenotypic and pedigree information of the Braunvieh cattle 
population came from the database of the Mexican Associa-
tion of Braunvieh Purebreeders (Asociación Mexicana de 
Criadores de Ganado Suizo de Registro, Mexico City, Mexico). 
Birth weight (BW), weaning (at 218 days of age) weight (WW), 
and yearling weight (YW) phenotypes were used. Data on 
10 generations back were extracted. Animals were born from 
1998 to 2016.
 For the genomic information, hair samples were col-
lected from 300 animals in eight herds located in Eastern, 
Central, and Western Mexico. The samples were geno-
typed at GeneSeek (Lincoln, NE, USA; https://www. 
neogen.com/), using the GeneSeek Genomic Profiler 
Bovine LDv.4 panel, with 30,000 and 50,000 SNP markers, 
150 animals with each Chip.

Phenotypes
Data editing for BW started with 32,159 records. Outliers 
were removed (animals with phenotypes higher or lower 
than the average phenotype in the database ±3 standard de-
viations). Records from animals without information of herd 
or dam age were deleted as well. Animals not genetically re-
lated to the 300 genotyped animals were discarded because 
the solutions for non-genotyped animals not related to gen-
otyped animals would remain the same between BLUP and 
ssGBLUP. Contemporary groups (CG) were defined by com-
bining the effects of herd (8 herds), year (from 1998 to 2016), 
and season of birth. Birth seasons were defined considering 
the Julian calendar, from 80 to 171 d, spring; from 172 to 
264 d, summer; from 265 to 354 d, autumn; from 355 to 366 
d, and from 1 to 79 d, winter. The days were counted contin-
uously from the beginning of the Julian period, starting from 
the first of January each year. Records of animals in CG with 
fewer than two animals or in CG with variance equal to zero 
were also discarded. Data edition resulted in 330 BW records 
for further analysis. Of the phenotyped animals, 232 had 
been genotyped.
 For WW data, editing started with 29,142 records. Those 
records with erroneous age at weaning, were outside the 
range average ±3 standard deviations, or had no information 
on management, herd, or age of dam were discarded. Animals 
not genetically related to the 300 genotyped animals were 
deleted as well. Contemporary groups for WW were defined 
in the same way as for BW with 6 herds and birth years from 
1998 to 2016. Three management groups were defined: calves 
fed milk from their dam, calves fed milk from their dam 
plus balanced feed, and calves fed milk from their dam and 
a wet nurse plus balanced feed. Records of animals in CG 
with fewer than two animals or in CG with variance equal to 
zero were also discarded. At the end of data editing, 267 WW 
records were left for further analysis. Of the phenotyped 

https://www.neogen.com/
https://www.neogen.com/


www.animbiosci.org  1005

Valerio-Hernández et al (2023) Anim Biosci 36:1003-1009

animals, 218 had been genotyped.
 Data editing for YW started with 19,971 records. Those 
with discordant age, or outside the average ±3 standard de-
viations, with no herd or management information were 
deleted. Animals not genetically related to the 300 genotyped 
animals were discarded as well. Contemporary groups were 
defined in the same way as for WW. Three management 
groups for YW were defined: animals kept under grazing, 
animals that grazed and received balanced feed, and con-
fined animals that received balanced feed. Records of animals 
in CG with fewer than two animals or in CG with variance 
equal to zero were also discarded. At the end of data editing, 
232 records for YW were available for subsequent analyses. 
Of the phenotyped animals, 191 had been genotyped.

Genotypes
Data from 300 genotyped animals (236 females and 64 males) 
born between 2001 and 2016 were used. The SNPs in com-
mon between the 30K and 50K Chips were used (12,835 
SNPs). Proportions of missing values for each marker and 
for each individual were calculated. The average of missing 
values by individual was 2.09% with a standard deviation of 
7.50%. The average call rate (non-missing proportion for 
each marker) was 97.90% with a standard deviation of 4.66%. 
Markers with a call rate below 95% were removed. Marker 
genotypes were recoded for additive effects as 0, 1, 2 (aa = 0, 
Aa or aA = 1, and AA = 2). Missing genotypes were imputed 
using 
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 is the estimated frequency of the allele 
coded as one at the j-th marker [24,25]. Monomorphic markers 
or those with minor allele frequency less than 0.04 were re-
moved. After all the cleaning and quality control process, 
11,646 of the 12,835 SNPs in common between the two Chips 
were available for further analysis.

Calculation of the genetic relationship matrices
The inverse of the additive genetic relationship matrix (A–1) 
was obtained from the pedigree information, using the 
function ‘getAInv’ from R package ‘pedigreemm’ [26]. The 
genomic relationship matrix was calculated as described by 
López-Cruz et al [27] and Pérez-Rodríguez et al [13]. Briefly, 
G = WWʹ/q, where W is the matrix of recoded marker geno-
types centered and standardized by column, and q is the 
number of markers. Because all markers were standardized 
to a variance of one, the average of the diagonal elements 
of G was about one, so that both matrices A and G have 
similar scaling.
 The inverse of the combined pedigree and genomic addi-
tive relationship matrix, including genotyped and non-
genotyped animals (H–1), is obtained directly without the 
need to form H. This matrix is defined as [7,12]:
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 The obtained α (0.0296) and β (0.9810) values set the mean 
of Ga to the mean of Agg, and the mean of diag(Ga) to the 
mean of diag(Agg). The scaling for the matrices G and A is 
similar, and as mentioned before the mean is around one, 
this is important since those matrixes are used as variance 
covariance matrixes that are used to fit models and com-
pute variance components that can be difficult to interpret 
if matrixes are not scaled correctly. The diagonal entries of 
G matrix ranges from 0.50 to 1.27, whereas for matrix A 
diagonal entries ranges from 1.00 to 1.26, for matrix H, the 
diagonal entries ranges from 0.51 to 1.34 and the average 
of these elements is also around 1.

Statistical analysis
Growth traits BW, WW, and YW were analyzed with differ-
ent univariate models and three alternative methods, BLUP, 
GBLUP, and ssGBLUP. The most important difference among 
these methods is the inverse relationship matrices used (A–1, 
G–1, H–1) and the animals under evaluation (only genotyped 
animals for GBLUP).
 Analyses of the three traits were performed with the linear 
model:

 y = Xβ+Z1c+Z2a+e     (1)
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trix relating phenotypes to fixed effects (3, 4, and 4 fixed 
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BW, WW, and YW in GBLUP, and 96, 66, and 59 CG for 
BW, WW, and YW in BLUP and ssGBLUP), Z2 is the inci-
dence matrix relating phenotypes to random additive genetic 
effects, and e is the vector of random residual effects. Addi-
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 are the corresponding variances. Variance compo-
nents for each method were estimated via the R package 
‘BGLR’ [28] using the Bayesian framework. Hyper-parame-
ters were set automatically according to internal rules [28]. 
Inferences were based on 25,000 MCMC iterations obtained 
after discarding 25,000 samples taken as burn-in and with a 
thin set to 10. The covariate age of the dam in days and sex 
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were considered as fixed effects for BW; for WW age of dam, 
sex, management group and the covariate of weaning age in 
days; similarly, for YW age of dam, sex, yearling age, and 
management group were considered as fixed effects. Weaning 
age and yearling age were treated as continuous covariates.

Validation analysis
GBLUP model: To study the predictive ability of the models, 
we partitioned the data at random to 80% of the observa-
tions as the training set and the remaining 20% as the testing 
set. We generated 100 partitions of the data at random and 
fitted model (1) using the BGLR package. The same param-
eters and hyperparameters described in the previous section 
were used for the variance components estimation. For each 
partition, we computed the Pearson correlation coefficient 
between the phenotypes adjusted for fixed effects and non-
genetic random effects and EBV. The average of the Pearson 
correlation coefficients and their standard deviations were 
calculated. For each of the 100 random validation partitions, 
we kept a record of which individuals were assigned to the 
testing set to validate the same set of individuals with BLUP 
and ssGBLUP methods.
 BLUP and ssGBLUP methods: To study the predictive ability 
of these methods, the data was partitioned into training and 
testing subsets. We assigned the same individuals predicted 
with the GBLUP model, as well as the rest of the individuals, 
to the testing set to have a common set of individuals whose 
breeding values needed to be predicted. We fitted the models 
and calculated Pearson correlation coefficients between the 
adjusted phenotypes and the EBVs using the same strategy 
as that used in the GBLUP model.

RESULTS

Table 1 shows the estimates of additive genetic (
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 explained 
the highest proportion of the phenotypic variance, except 
for YW-GBLUP. Heritability estimates (h2) are also pre-
sented in Table 1. For BW, the heritability estimate obtained 
with GBLUP was the lowest, while the highest was obtained 
with BLUP. For WW, the highest heritability estimate was 
obtained with BLUP; the estimates obtained with GBLUP 
and ssGBLUP were similar. For YW, the heritability esti-
mates obtained with GBLUP and BLUP were similar; the 
lowest was obtained with ssGBLUP. Within traits, the heri-
tability estimates obtained with the three alternative methods 
were within a narrow range, except for BW-GBLUP (h2 = 
0.128). The high standard errors associated with the variance 
components (Table 1) might be due to the small sample 
size.
 Table 2 shows the Pearson correlation coefficients between 
the adjusted phenotypes and the EBVs. For BW, the lowest 
and the highest correlations were obtained with GBLUP and 
BLUP, respectively. BLUP yielded consistently higher estimates 
than either GBLUP or ssGBLUP. Figure 1 shows graphically 
the results of the validation; each bar represents a correlation 
estimate and the error bars represent the associated standard 
errors computed by dividing the standard deviation in pa-
renthesis in Table 2 by 10, the square root of the number of 
random partitions evaluated.

Table 1. Estimates of variances and heritability for birth weight, weaning weight, and yearling weight of a Mexican Braunvieh cattle population ob-
tained after fitting three different models

Items Component
GBLUP BLUP ssGBLUP

Value SE % Value SE % Value SE %

BW
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Table 1. Estimates of variances and heritability for birth weight, weaning weight, and yearling 407 
weight of a Mexican Braunvieh cattle population obtained after fitting three different models 408 

Items GBLUP  BLUP  ssGBLUP 

 Component Value SE %  Value SE %  Value SE % 

BW 

𝜎𝜎�� 1.813 0.554 12.88  3.323 0.859 26.02  3.213 0.835 24.49 

𝜎𝜎���  9.21 2.312 65.42  6.348 1.531 49.71  6.791 1.552 51.77 

𝜎𝜎�� 3.056 0.517 21.70  3.099 0.585 24.27  3.115 0.594 23.74 

h2 0.128    0.260    0.244   

WW 

𝜎𝜎�� 137.780 51.824 19.25  231.475 84.339 22.35  206.365 75.399 19.57 

𝜎𝜎���  297.556 94.466 41.58  465.301 139.124 44.94  490.046 140.217 46.47 

𝜎𝜎�� 280.373 50.549 39.17  338.71 68.278 32.71  358.199 66.169 33.97 

h2 0.192    0.223    0.195   

YW 

𝜎𝜎�� 428.235 175.700 22.16  612.485 220.039 23.16  524.815 200.708 19.37 

𝜎𝜎���  631.958 212.973 32.70  1,097.47 365.987 41.50  1,187.73 379.402 43.82 

𝜎𝜎�� 872.358 168.841 45.14  934.302 194.968 35.33  997.386 187.932 36.81 

h2 0.221    0.231    0.193   

GBLUP, genomic best linear unbiased prediction; BLUP, best linear unbiased prediction; 409 
ssGBLUP, single-step GBLUP; SE, standard errors for the variance parameters; BW, birth weight; 410 
WW, weaning weight; YW, yearling weight; 𝜎𝜎��, additive genetic variance; 𝜎𝜎��� , contemporary 411 
group variance; 𝜎𝜎��, residual variance; h2, heritability. 412 
  413 

1.813 0.554 12.88 3.323 0.859 26.02 3.213 0.835 24.49
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𝜎𝜎�� 280.373 50.549 39.17  338.71 68.278 32.71  358.199 66.169 33.97 

h2 0.192    0.223    0.195   

YW 

𝜎𝜎�� 428.235 175.700 22.16  612.485 220.039 23.16  524.815 200.708 19.37 

𝜎𝜎���  631.958 212.973 32.70  1,097.47 365.987 41.50  1,187.73 379.402 43.82 

𝜎𝜎�� 872.358 168.841 45.14  934.302 194.968 35.33  997.386 187.932 36.81 

h2 0.221    0.231    0.193   

GBLUP, genomic best linear unbiased prediction; BLUP, best linear unbiased prediction; 409 
ssGBLUP, single-step GBLUP; SE, standard errors for the variance parameters; BW, birth weight; 410 
WW, weaning weight; YW, yearling weight; 𝜎𝜎��, additive genetic variance; 𝜎𝜎��� , contemporary 411 
group variance; 𝜎𝜎��, residual variance; h2, heritability. 412 
  413 

9.21 2.312 65.42 6.348 1.531 49.71 6.791 1.552 51.77
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𝜎𝜎�� 280.373 50.549 39.17  338.71 68.278 32.71  358.199 66.169 33.97 

h2 0.192    0.223    0.195   

YW 

𝜎𝜎�� 428.235 175.700 22.16  612.485 220.039 23.16  524.815 200.708 19.37 

𝜎𝜎���  631.958 212.973 32.70  1,097.47 365.987 41.50  1,187.73 379.402 43.82 

𝜎𝜎�� 872.358 168.841 45.14  934.302 194.968 35.33  997.386 187.932 36.81 

h2 0.221    0.231    0.193   

GBLUP, genomic best linear unbiased prediction; BLUP, best linear unbiased prediction; 409 
ssGBLUP, single-step GBLUP; SE, standard errors for the variance parameters; BW, birth weight; 410 
WW, weaning weight; YW, yearling weight; 𝜎𝜎��, additive genetic variance; 𝜎𝜎��� , contemporary 411 
group variance; 𝜎𝜎��, residual variance; h2, heritability. 412 
  413 

137.780 51.824 19.25 231.475 84.339 22.35 206.365 75.399 19.57
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Table 1. Estimates of variances and heritability for birth weight, weaning weight, and yearling 407 
weight of a Mexican Braunvieh cattle population obtained after fitting three different models 408 

Items GBLUP  BLUP  ssGBLUP 

 Component Value SE %  Value SE %  Value SE % 

BW 

𝜎𝜎�� 1.813 0.554 12.88  3.323 0.859 26.02  3.213 0.835 24.49 

𝜎𝜎���  9.21 2.312 65.42  6.348 1.531 49.71  6.791 1.552 51.77 

𝜎𝜎�� 3.056 0.517 21.70  3.099 0.585 24.27  3.115 0.594 23.74 

h2 0.128    0.260    0.244   

WW 

𝜎𝜎�� 137.780 51.824 19.25  231.475 84.339 22.35  206.365 75.399 19.57 

𝜎𝜎���  297.556 94.466 41.58  465.301 139.124 44.94  490.046 140.217 46.47 

𝜎𝜎�� 280.373 50.549 39.17  338.71 68.278 32.71  358.199 66.169 33.97 

h2 0.192    0.223    0.195   

YW 

𝜎𝜎�� 428.235 175.700 22.16  612.485 220.039 23.16  524.815 200.708 19.37 

𝜎𝜎���  631.958 212.973 32.70  1,097.47 365.987 41.50  1,187.73 379.402 43.82 

𝜎𝜎�� 872.358 168.841 45.14  934.302 194.968 35.33  997.386 187.932 36.81 

h2 0.221    0.231    0.193   

GBLUP, genomic best linear unbiased prediction; BLUP, best linear unbiased prediction; 409 
ssGBLUP, single-step GBLUP; SE, standard errors for the variance parameters; BW, birth weight; 410 
WW, weaning weight; YW, yearling weight; 𝜎𝜎��, additive genetic variance; 𝜎𝜎��� , contemporary 411 
group variance; 𝜎𝜎��, residual variance; h2, heritability. 412 
  413 

297.556 94.466 41.58 465.301 139.124 44.94 490.046 140.217 46.47
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𝜎𝜎�� 280.373 50.549 39.17  338.71 68.278 32.71  358.199 66.169 33.97 

h2 0.192    0.223    0.195   

YW 

𝜎𝜎�� 428.235 175.700 22.16  612.485 220.039 23.16  524.815 200.708 19.37 

𝜎𝜎���  631.958 212.973 32.70  1,097.47 365.987 41.50  1,187.73 379.402 43.82 

𝜎𝜎�� 872.358 168.841 45.14  934.302 194.968 35.33  997.386 187.932 36.81 

h2 0.221    0.231    0.193   

GBLUP, genomic best linear unbiased prediction; BLUP, best linear unbiased prediction; 409 
ssGBLUP, single-step GBLUP; SE, standard errors for the variance parameters; BW, birth weight; 410 
WW, weaning weight; YW, yearling weight; 𝜎𝜎��, additive genetic variance; 𝜎𝜎��� , contemporary 411 
group variance; 𝜎𝜎��, residual variance; h2, heritability. 412 
  413 

280.373 50.549 39.17 338.71 68.278 32.71 358.199 66.169 33.97

h2 0.192 0.223 0.195

YW
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Table 1. Estimates of variances and heritability for birth weight, weaning weight, and yearling 407 
weight of a Mexican Braunvieh cattle population obtained after fitting three different models 408 

Items GBLUP  BLUP  ssGBLUP 

 Component Value SE %  Value SE %  Value SE % 

BW 

𝜎𝜎�� 1.813 0.554 12.88  3.323 0.859 26.02  3.213 0.835 24.49 

𝜎𝜎���  9.21 2.312 65.42  6.348 1.531 49.71  6.791 1.552 51.77 

𝜎𝜎�� 3.056 0.517 21.70  3.099 0.585 24.27  3.115 0.594 23.74 

h2 0.128    0.260    0.244   

WW 

𝜎𝜎�� 137.780 51.824 19.25  231.475 84.339 22.35  206.365 75.399 19.57 

𝜎𝜎���  297.556 94.466 41.58  465.301 139.124 44.94  490.046 140.217 46.47 

𝜎𝜎�� 280.373 50.549 39.17  338.71 68.278 32.71  358.199 66.169 33.97 

h2 0.192    0.223    0.195   

YW 

𝜎𝜎�� 428.235 175.700 22.16  612.485 220.039 23.16  524.815 200.708 19.37 

𝜎𝜎���  631.958 212.973 32.70  1,097.47 365.987 41.50  1,187.73 379.402 43.82 

𝜎𝜎�� 872.358 168.841 45.14  934.302 194.968 35.33  997.386 187.932 36.81 

h2 0.221    0.231    0.193   

GBLUP, genomic best linear unbiased prediction; BLUP, best linear unbiased prediction; 409 
ssGBLUP, single-step GBLUP; SE, standard errors for the variance parameters; BW, birth weight; 410 
WW, weaning weight; YW, yearling weight; 𝜎𝜎��, additive genetic variance; 𝜎𝜎��� , contemporary 411 
group variance; 𝜎𝜎��, residual variance; h2, heritability. 412 
  413 

428.235 175.700 22.16 612.485 220.039 23.16 524.815 200.708 19.37
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Table 1. Estimates of variances and heritability for birth weight, weaning weight, and yearling 407 
weight of a Mexican Braunvieh cattle population obtained after fitting three different models 408 

Items GBLUP  BLUP  ssGBLUP 

 Component Value SE %  Value SE %  Value SE % 

BW 

𝜎𝜎�� 1.813 0.554 12.88  3.323 0.859 26.02  3.213 0.835 24.49 

𝜎𝜎���  9.21 2.312 65.42  6.348 1.531 49.71  6.791 1.552 51.77 

𝜎𝜎�� 3.056 0.517 21.70  3.099 0.585 24.27  3.115 0.594 23.74 

h2 0.128    0.260    0.244   

WW 

𝜎𝜎�� 137.780 51.824 19.25  231.475 84.339 22.35  206.365 75.399 19.57 

𝜎𝜎���  297.556 94.466 41.58  465.301 139.124 44.94  490.046 140.217 46.47 

𝜎𝜎�� 280.373 50.549 39.17  338.71 68.278 32.71  358.199 66.169 33.97 

h2 0.192    0.223    0.195   

YW 

𝜎𝜎�� 428.235 175.700 22.16  612.485 220.039 23.16  524.815 200.708 19.37 

𝜎𝜎���  631.958 212.973 32.70  1,097.47 365.987 41.50  1,187.73 379.402 43.82 

𝜎𝜎�� 872.358 168.841 45.14  934.302 194.968 35.33  997.386 187.932 36.81 

h2 0.221    0.231    0.193   

GBLUP, genomic best linear unbiased prediction; BLUP, best linear unbiased prediction; 409 
ssGBLUP, single-step GBLUP; SE, standard errors for the variance parameters; BW, birth weight; 410 
WW, weaning weight; YW, yearling weight; 𝜎𝜎��, additive genetic variance; 𝜎𝜎��� , contemporary 411 
group variance; 𝜎𝜎��, residual variance; h2, heritability. 412 
  413 

631.958 212.973 32.70 1,097.47 365.987 41.50 1,187.73 379.402 43.82
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Table 1. Estimates of variances and heritability for birth weight, weaning weight, and yearling 407 
weight of a Mexican Braunvieh cattle population obtained after fitting three different models 408 

Items GBLUP  BLUP  ssGBLUP 

 Component Value SE %  Value SE %  Value SE % 

BW 

𝜎𝜎�� 1.813 0.554 12.88  3.323 0.859 26.02  3.213 0.835 24.49 

𝜎𝜎���  9.21 2.312 65.42  6.348 1.531 49.71  6.791 1.552 51.77 

𝜎𝜎�� 3.056 0.517 21.70  3.099 0.585 24.27  3.115 0.594 23.74 

h2 0.128    0.260    0.244   

WW 

𝜎𝜎�� 137.780 51.824 19.25  231.475 84.339 22.35  206.365 75.399 19.57 

𝜎𝜎���  297.556 94.466 41.58  465.301 139.124 44.94  490.046 140.217 46.47 

𝜎𝜎�� 280.373 50.549 39.17  338.71 68.278 32.71  358.199 66.169 33.97 

h2 0.192    0.223    0.195   

YW 

𝜎𝜎�� 428.235 175.700 22.16  612.485 220.039 23.16  524.815 200.708 19.37 

𝜎𝜎���  631.958 212.973 32.70  1,097.47 365.987 41.50  1,187.73 379.402 43.82 

𝜎𝜎�� 872.358 168.841 45.14  934.302 194.968 35.33  997.386 187.932 36.81 

h2 0.221    0.231    0.193   

GBLUP, genomic best linear unbiased prediction; BLUP, best linear unbiased prediction; 409 
ssGBLUP, single-step GBLUP; SE, standard errors for the variance parameters; BW, birth weight; 410 
WW, weaning weight; YW, yearling weight; 𝜎𝜎��, additive genetic variance; 𝜎𝜎��� , contemporary 411 
group variance; 𝜎𝜎��, residual variance; h2, heritability. 412 
  413 

872.358 168.841 45.14 934.302 194.968 35.33 997.386 187.932 36.81
h2 0.221 0.231 0.193

GBLUP, genomic best linear unbiased prediction; BLUP, best linear unbiased prediction; ssGBLUP, single-step GBLUP; SE, standard errors for the variance 
parameters; BW, birth weight; WW, weaning weight; YW, yearling weight; σ_a^2, additive genetic variance; σ_cg^2, contemporary group variance; σ_e^2, 
residual variance; h2, heritability.
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DISCUSSION 

A potential benefit of ssGBLUP over BLUP and GBLUP is 
that it utilizes data used in both BLUP and GBLUP, simulta-
neously. Thus, ssGBLUP and BLUP use phenotypes and 
pedigrees from genotyped and non-genotyped animals. As 
GBLUP is limited to genotyped animals, only phenotypes of 
genotyped animals were used.
 The statistical models for BW and WW typically include a 
maternal genetic effect. However, we did not have enough 
information to estimate this effect to include it in the model 
due to the small sample size. Consequently, this will lead to 
an increase in the uncertainty of predictions. 
 For the three traits and the three methods tested, 
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always the greatest with BLUP (Table 1). In contrast, 
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 was 
consistently the lowest for GBLUP. Estimation of the variance 
components and genetic parameters is useful for planning 
selection in breeding programs; additive genetic variance 
has long been regarded as the most important.
 The heritability estimates were within the range of what 
has been reported in other studies. For example, heritability 
estimates for several cattle breeds using BLUP (A–1) were in 
ranges from 0.15 to 0.36, from 0.10 to 0.27, and from 0.18 to 
0.30 for BW, WW and YW, respectively [29,30].
 Pearson correlation estimates between the adjusted phe-
notypes and the EBVs were highest for BLUP, followed by 
ssGBLUP. The estimates obtained with GBLUP and ssGBUP 
were quite similar for YW. The reported Pearson correlation 
coefficients between corrected phenotypes and EBVs allow 
us to determine how well a model predicts the additive ge-
netic merits. In this study, BLUP gave the best predictions. 
We also calculated Pearson correlation coefficients between 
observed and predicted phenotypes. This correlation deter-
mines the ability of the model to predict the phenotype of 
interest, given the information provided in the model. Other 
studies [12,31,32] reported better model fits by including ge-
nomic information; however, genomic information in this 
study was limited.
 Table 2 presents the Pearson correlation coefficients be-
tween corrected phenotypes and EBVs together with the 
standard errors around the correlation coefficients. The num-

Figure 1. Pearson correlation coefficients between corrected phenotypes and the estimated breeding value obtained with three different models 
for birth (BW), weaning (WW), and yearling weight (YW) of a Mexican Braunvieh cattle population.
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ssGBLUP 0.378 0.166 0.117
GBLUP 0.137 0.166 0.129
BLUP 0.404 0.251 0.186
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Table 2. Pearson correlation (Cor) and standard deviation (SD) esti-
mates between corrected phenotypes and estimated breeding values 
obtained from cross validation with BLUP, GBLUP and ssGBLUP 
models, for BW, WW, YW 

Item
BW WW YW

Cor SD Cor SD Cor SD

GBLUP 0.137 0.190 0.166 0.126 0.129 0.150
BLUP 0.404 0.180 0.251 0.114 0.186 0.153
ssGBLUP 0.378 0.194 0.166 0.112 0.117 0.160

BW, birth weight; WW, weaning weight; YW, yearling weight; Cor, correla-
tion; SD, standard deviation; GBLUP, genomic best linear unbiased predic-
tion; BLUP, best linear unbiased prediction; ssGBLUP, single-step GBLUP.
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ber of individuals in the training set for methods BLUP and 
ssGBLUP was larger than in the training set for GBLUP, and 
the number of individuals predicted in the three cases were 
the same. The sample size in the training set could result in 
better predictions in the testing set when datasets are small.
 Other studies obtained higher prediction accuracies using 
ssGBLUP [11,12,14,19]. However, these authors used larger 
populations than that of our study. We used 11,648 SNPs to 
compute G and H matrices, while in the mentioned studies 
53,455, 45,818, 25,720, and 57,000 SNP markers, respectively, 
were used. Even though, the number of SNPs was not as 
large as in those studies, the correlation estimates results 
(BLUP vs ssGBLUP) suggest that the information provided 
by 11,648 markers is valuable.
 Christensen et al [12] studying average daily gain and feed 
conversion in Danish Duroc swine, reported that ssGBLUP 
and GBLUP yielded more accurate predictions than BLUP. 
These advantages held true in both uni- and bivariate analyses. 
Additionally, they found that the ssGBLUP method resulted 
in more accurate predictions for non-genotyped animals 
[12]. These authors concluded that ssGBLUP yields more 
accurate predictions for genotyped animals than BLUP, and 
similar accuracy compared with GBLUP for genotyped ani-
mals. Montes et al [29] and Park et al [32] reported slightly 
higher accuracies for ssGBLUP than for BLUP for five car-
cass traits of Hanwoo cattle. 

CONCLUSION

The literature reports that ssGBLUP outperforms pedigree 
and marker-based methods. The gains in some cases are 
slightly higher and depend on several factors, for example, 
number of individuals genotyped and non-genotyped, sam-
ple size, number of markers, and heritability of the traits. In 
our case, the number of genotyped animals was small com-
pared with other studies, and this is perhaps the main reason 
that we did not observe a clear advantage of ssGBLUP over 
BLUP. However, the results are encouraging, and we will 
continue genotyping and phenotyping more animals (espe-
cially those with more relatives in the population) in the years 
to come to increase our sample sizes. Another possibility for 
improving the benefits of ssGBLUP is making use of geno-
types on a larger set of markers by genotyping more animals 
for both 30K and 50K panels to make imputation to the 50K 
panel possible.
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