웨어러블 전자소자용 스트레처블 유기태양전지 연구개발 동향

  • 김건우 (한국과학기술원 생명화학공학과) ;
  • 박진수 (한국과학기술원 생명화학공학과) ;
  • 김범준 (한국과학기술원 생명화학공학과)
  • Published : 2023.04.30

Abstract

유기태양전지는 차세대 신재생 에너지소자로 크게 주목받아 왔으며, 특히 최근에는 높은 신축성과 기계적 안정성이 요구되는 웨어러블 및 휴대용 전자소자의 에너지 공급원으로 연구되고 있다. 이를 위해 전기적/기계적 성능 양 측면에서 모두 뛰어난 신규 전도성 소재 및 소자의 개발이 매우 필수적인데, 두 성질은 일반적으로 Trade-Off 관계를 가지고 있어 두 가지 특성을 모두 확보하는 것이 매우 어렵다. 본 원고에서는 높은 전기적/기계적 특성을 동시에 지니는 전도성 고분자 소재에 관한 분자 설계 전략과 기존의 경직 소자 및 플렉서블 소자와 완전히 다른 기계적 성질을 요구하는 신축형 유기태양전지 소자 플랫폼 기술로의 비약적인 발전을 포함한 기술 동향을 요약하여 소개하고자 한다.

Keywords

Acknowledgement

본 논문은 한국연구재단의 지원을 받아 수행된 과제입니다(NRF-2022R1A2B5B03001761).

References

  1. J. S. Park 외 6인, 2022, Material Design and Device Fabrication Strategies for Stretchable Organic Solar Cells. 
  2. Y. W. Li 외 3인, 2018, Flexible and Semitransparent Organic Solar Cells. 
  3. E. Dauzon 외 5인, 2021, Pushing The Limits of Flexibility and Stretchability of Solar Cells: A Review. 
  4. Y. Cui 외 14인, 2021, Single-Junction Organic Photovoltaic Cell with 19% Efficiency. 
  5. M. Amjadi 외 2인, 2015, Ultra-Stretchable and Skin-Mountable Strain Sensors Using Carbon Nanotubes-Ecoflex Nanocomposites. 
  6. G. Zeng 외 11인, 2022, Realizing 17.5% Efficiency Flexible Organic Solar Cells via Atomic-Level Chemical Welding of Silver Nanowire Electrodes. 
  7. K. Fukuda 외 2인, 2020, The Future of Flexible Organic Solar Cells. 
  8. L. V. Kayser 외 1인, 2019, Stretchable Conductive Polymers and Composites Based On PEDOT and PEDOT:PSS. 
  9. W. T. Li 외 12인, 2020, Recent Progress in Silver Nanowire Networks for Flexible Organic Electronics. 
  10. N. Liu 외 11인, 2017, Ultratransparent and Stretchable Graphene Electrodes. 
  11. N. Kim 외 7인, 2014, Highly Conductive PEDOT:PSS Nanofibrils Induced by Solution-Processed Crystallization. 
  12. X. Fan, 2021, Doping and Design of Flexible Transparent Electrodes for High-Performance Flexible Organic Solar Cells: Recent Advances and Perspectives. 
  13. D. J. Lipomi 외 5인, 2012, Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates. 
  14. H. He 외 1인, 2020, Enhancements in The Mechanical Stretchability and Thermoelectric Properties of PEDOT:PSS for Flexible Electronics Applications. 
  15. S. F. Zhao 외 10인, 2017, Recent Advancements in Flexible and Stretchable Electrodes for Electromechanical Sensors: Strategies, Materials, and Features. 
  16. M. D. Dickey, 2017, Stretchable and Soft Electronics Using Liquid Metals. 
  17. D. J. Lipomi 외 3인, 2011, Stretchable Organic Solar Cells. 
  18. J. Noh 외 9인, 2021, Intrinsically Stretchable Organic Solar Cells with Efficiencies of over 11%. 
  19. T. Yan 외 5인, 2019, 16.67% Rigid and 14.06% Flexible Organic Solar Cells Enabled by Ternary Heterojunction Strategy. 
  20. Z. Wang 외 6인, 2021, Intrinsically Stretchable Organic Solar Cells Beyond 10% Power Conversion Efficiency Enabled by Transfer Printing Method. 
  21. J.-W. Lee 외 10인, 2022, Intrinsically Stretchable, Highly Efficient Organic Solar Cells Enabled by Polymer Donors Featuring Hydrogen-Bonding Spacers. 
  22. S. Savagatrup 외 3인, 2014, Mechanical Properties of Conjugated Polymers and Polymer-Fullerene Composites as A Function of Molecular Structure. 
  23. E. J. Sawyer 외 5인, 2016, Large Increase in Stretchability of Organic Electronic Materials by Encapsulation. 
  24. L. Li 외 7인, 2017, A Solid-State Intrinsically Stretchable Polymer Solar Cell. 
  25. Y. T. Hsieh 외 6인, 2018, Realization of Intrinsically Stretchable Organic Solar Cells Enabled by Charge-Extraction Layer and Photoactive Material Engineering. 
  26. M. S. Wang 외 4인, 2021, Morphology Modulation of Organic Photovoltaics with Block Copolymer Additive Based on Rational Design Strategies. 
  27. Q. L. Zhu 외 12인, 2021, Intermolecular Interaction Control Enables Co-Optimization of Efficiency, Deformability, Mechanical and Thermal Stability of Stretchable Organic Solar Cells. 
  28. J.-W. Lee 외 7인, 2022, Intrinsically-Stretchable, Efficient Organic Solar Cells Achieved by High-Molecular-Weight, Electro-Active Polymer Acceptor Additives. 
  29. J.-W. Lee 외 7인, 2022, Intrinsically Stretchable and Non-Halogenated Solvent Processed Polymer Solar Cells Enabled by Hydrophilic Spacer-Incorporated Polymers. 
  30. Z. Wang 외 8인, 2022, Intrinsically Stretchable Organic Solar Cells with Simultaneously Improved Mechanical Robustness and Morphological Stability Enabled by A Universal Crosslinking Strategy. 
  31. J. Choi 외 8인, 2019, Importance of Critical Molecular Weight of Semicrystalline N-Type Polymers for Mechanically Robust, Efficient Electroactive Thin Films. 
  32. H. You 외 9인, 2021, Ester-Functionalized, Wide-Bandgap Derivatives of PM7 for Simultaneous Enhancement of Photovoltaic Performance and Mechanical Robustness of All-Polymer Solar Cells. 
  33. J. Y. Oh 외 18인, 2016, Intrinsically Stretchable and Healable Semiconducting Polymer for Organic Transistors. 
  34. C. Lee 외 4인, 2019, Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells. 
  35. Z.-G. Zhang 외 8인, 2017, Constructing A Strongly Absorbing Low-Bandgap Polymer Acceptor for High-Performance All-Polymer Solar Cells. 
  36. J. W. Lee 외 10인, 2021, Efficient, Thermally Stable, and Mechanically Robust All-Polymer Solar Cells Consisting of The Same Benzodithiophene Unit-Based Polymer Acceptor and Donor with High Molecular Compatibility. 
  37. Y. U. Kim 외 9인, 2021, Comparison of The Mechanical Properties of Polymer Blend and Main-Chain Conjugated Copolymer Films with Donor-Acceptor Heterojunctions. 
  38. J. Xu 외 26인, 2017, Highly Stretchable Polymer Semiconductor Films through The Nanoconfinement Effect. 
  39. J.-W. Lee 외 11인, 2021, Donor-Acceptor Alternating Copolymer Compatibilizers for Thermally Stable, Mechanically Robust, and High-Performance Organic Solar Cells.