DOI QR코드

DOI QR Code

Feasibility study of improved median filtering in PET/MR fusion images with parallel imaging using generalized autocalibrating partially parallel acquisition

  • Chanrok Park (Department of Radiological Science, Eulji University) ;
  • Jae-Young Kim (Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University) ;
  • Chang-Hyeon An (Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University) ;
  • Youngjin Lee (Department of Radiological Science, Gachon University)
  • 투고 : 2022.08.08
  • 심사 : 2022.09.15
  • 발행 : 2023.01.25

초록

This study aimed to analyze the applicability of the improved median filter in positron emission tomography (PET)/magnetic resonance (MR) fusion images based on parallel imaging using generalized autocalibrating partially parallel acquisition (GRAPPA). In this study, a PET/MR fusion imaging system based on a 3.0T magnetic field and 18F radioisotope were used. An improved median filter that can set a mask of the median value more efficiently than before was modeled and applied to the acquired image. As quantitative evaluation parameters of the noise level, the contrast to noise ratio (CNR) and coefficient of variation (COV) were calculated. Additionally, no-reference-based evaluation parameters were used to analyze the overall image quality. We confirmed that the CNR and COV values of the PET/MR fusion images to which the improved median filter was applied improved by approximately 3.32 and 2.19 times on average, respectively, compared to the noisy image. In addition, the no-reference-based evaluation results showed a similar trend for the noise-level results. In conclusion, we demonstrated that it can be supplemented by using an improved median filter, which suggests the problem of image quality degradation of PET/MR fusion images that shortens scan time using GRAPPA.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF-2021R1F1A1061440).

참고문헌

  1. D. Kim, T. Nam, D. Hernandez, K.N. Kim, Design of rectangular coaxial slot antenna for ultra-highfield magnetic resonance imaging, International Journal of Imaging Systems and Technology 32 (2022) 1133-1142. https://doi.org/10.1002/ima.22688
  2. Y.D. Son, Y.B. Kim, J.H. Kim, J.H. Kim, D.H. Kwon, H. Lee, Z.H. Cho, Future prospects of positron emission tomography-magnetic resonance imaging hybrid systems and applications in psychiatric disorders, Pharmaceuticals 15 (2022), https://doi.org/10.3390/ph15050583.
  3. S.H. Yoon, S.R. Kim, H.J. Yang, Evaluation of attenuation correction using dixon based bone model for 18F FDG brain PET/MR: a volunteer study, Journal of Magnetics 25 (2020) 463-468. https://doi.org/10.4283/JMAG.2020.25.4.463
  4. M.E. Mayerhoefer, H. Prosch, L. Beer, D. Tamandl, T. Beyer, C. Hoeller, D. Berzaczy, M. Raderer, M. Preusser, M. Hochmair, B. Kiesewetter, C. Scheuba, A. Ba-Ssalamah, G. Karanikas, J. Kesselbacher, G. Prager, K. Dieckmann, S. Polterauer, M. Weber, I. Rausch, B. Brauner, H. Eidherr, W. Wadsak, A.R. Haug, PET/MRI versus PET/CT in oncology: a prospective single-center study of 330 examinations focusing on implications for patient management and cost considerations, European Journal of Nuclear Medicine and Molecular Imaging 47 (2020) 51-60. https://doi.org/10.1007/s00259-019-04452-y
  5. B. Bybel, R.C. Brunken, F.P. DiFilippo, D.R. Neumann, G. Wu, M.D. Cerquueira, SPECT/CT imaging: clinical utility of an emerging technology, RadioGraphics 28 (2008) 1097-1113. https://doi.org/10.1148/rg.284075203
  6. J.H. Jung, Y. Choi, K.C. Im, PET/MRI: technical challenges and recent advances, Nuclear Medicine and Molecular Imaging 50 (2016) 3-12. https://doi.org/10.1007/s13139-016-0393-1
  7. B. Pichler, H.F. Wehrl, A. Kolb, M.S. Judenhofer, PET/MRI: THE NEXT GENERATION OF MULTI-MODALITY IMAGING? Seminars in Nuclear Medicine 38 (2008) 199-208. https://doi.org/10.1053/j.semnuclmed.2008.02.001
  8. M. Blaimer, F.A. Breuer, N. Seiberlich, M.F. Mueller, R.M. Heidemann, V. Jellus, G. Wiggins, L.L. Wald, M.A. Griswold, P.M. Jakob, Accelerated volumetric MRI with a SENSE/GRAPPA combination, Journal of Magnetic Resonance Imaging 24 (2006) 444-450. https://doi.org/10.1002/jmri.20632
  9. J.C. Ye, Compressed sensing MRI: a review from signal processing perspective, BMC Biomedical Engineering 1 (2019), https://doi.org/10.1186/s42490-019-0006-z.
  10. M.A. Griswold, P.M. Jakob, R.M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, A. Haase, Generalized autocalibrating partially parallel acquisitions (GRAPPA), Magnetic Resonance in Medicine 47 (2002) 1202-1210. https://doi.org/10.1002/mrm.10171
  11. S. Aja-Fernandez, G. Vegas-Sanchez-Ferrero, A. Tristan-Vega, Noise estimation in parallel MRI: GRAPPA and SENSE, Magnetic Resonance Imaging 32 (2014) 281-290. https://doi.org/10.1016/j.mri.2013.12.001
  12. T.L. Lindholm, L. Botes, E.L. Engman, A. Frank, T. Jonsson, L. Svensson, P. Julin, Parallel imaging: is GRAPPA a useful acquisition tool for MR imaging intended for volumetric brain analysis? BMC Medical Imaging 9 (2009) https://doi.org/10.1186/1471-2342-9-15.
  13. Z. Laib, F.A. Sid, K. Abed-Meraim, A. Ouldali, Estimation error bound for GRAPPA diffusion-weighted MRI, Magnetic Resonance Imaging 74 (2020) 181-194. https://doi.org/10.1016/j.mri.2020.09.022
  14. D.R.K. Brownrigg, The weighted median filter, Communications of the ACM 27 (1984) 807-818. https://doi.org/10.1145/358198.358222
  15. S.J. Ko, Y.H. Lee, Center weighted median filters and their applications to image enhancement, IEEE Transactions on Circuits and Systems 38 (1991) 984-993. https://doi.org/10.1109/31.83870
  16. T. Chen, H.R. Wu, Adaptive impulse detection using center-weighted median filters, IEEE Signal Processing Letters 8 (2001) 1-3. https://doi.org/10.1109/97.889633
  17. M. Juneja, R. Mohana, An improved adaptive median filtering method for impulse noise detection, International Journal of Recent Trends in Engineering 1 (2009) 274-278.
  18. Y. Lee, Performance evaluation of noise reduction algorithm with median filter using improved thresholding method in pixelated semiconductor gamma camera system: a numerical simulation study, Nuclear Engineering and Technology 51 (2019) 439-443. https://doi.org/10.1016/j.net.2018.10.005
  19. K.O. Boateng, B.W. Asubam, D.S. Laar, Improving the effectiveness of the median filter, International Journal of Electronics and Communication Engineering 5 (2012) 85-97.
  20. A. Mittal, A.K. Moorthy, A.C. Bovik, No-reference image quality assessment in the spatial domain, IEEE Transactions on Image Processing 21 (2012) 4695-4708. https://doi.org/10.1109/TIP.2012.2214050
  21. A. Mittal, R. Soundararajan, A.C. Bovik, Making a "completely blind" image quality analyzer, IEEE Signal Processing Letters 20 (2013) 209-212. https://doi.org/10.1109/LSP.2012.2227726
  22. C.R. Park, S.H. Kang, Y. Lee, Feasibility of total variation noise reduction algorithm according to various MR-based PET images in a simultaneous PET/MR system: a phantom study, Diagnostics 11 (2021), https://doi.org/10.3390/diagnostics11020319.
  23. J. Park, C.K. Kang, Y. Lee, Quantitative evaluation of the image quality using the fast nonlocal means denoising approach in diffusion-weighted magnetic resonance imaging with high b-value, Journal of the Korean Physical Society 78 (2021) 244-250. https://doi.org/10.1007/s40042-020-00028-4
  24. A. Kumar, Nonlocal means image denoising using orthogonal moments, Applied Optics 54 (2015) 8156-8165. https://doi.org/10.1364/AO.54.008156
  25. F. Huang, Y.L.S. Vijayakumar, S. Hertel, G.R. Duensing, High-pass GRAPPA: an image support reduction technique for improved partially parallel imaging, Magnetic Resonance in Medicine 59 (2008) 642-649. https://doi.org/10.1002/mrm.21495
  26. Y. Chang, D. Liang, L. Ying, Nonlinear GRAPPA: a kernel approach to parallel MRI reconstruction, Magnetic Resonance in Medicine 68 (2012) 730-740. https://doi.org/10.1002/mrm.23279
  27. S. Madhusoodhanan, J.S. Paul, A quantitative survey of GRAPPA reconstruction in parallel MRI: impact on noise reduction and aliasing, Concepts in Magnetic Resonance A 44A (2015) 287-308.