DOI QR코드

DOI QR Code

Beryllium oxide utilized in nuclear reactors: Part II, A systematic review of the neutron irradiation effects

  • Ming-dong Hou (Institute of Nuclear and New Energy Technology, Tsinghua University) ;
  • Xiang-wen Zhou (Institute of Nuclear and New Energy Technology, Tsinghua University) ;
  • Bing Liu (Institute of Nuclear and New Energy Technology, Tsinghua University)
  • Received : 2022.05.30
  • Accepted : 2022.10.17
  • Published : 2023.02.25

Abstract

Beryllium oxide (BeO) is being re-emphasized and utilized in Micro Modular Reactors (MMR) because of its prominent nuclear and high temperature properties in recent years. The implications of the research about effects of neutron irradiation on the microstructure and properties of BeO are significant. This article comprehensively reviews the effects of neutron irradiation on BeO and proposes the maximum permissible neutron doses at different temperatures for BeO without cracks in appearance according to the data in the previous literature. This maximum permissible neutron dose value has important reference significance for the experimental study of BeO. The effects of neutron irradiation on the thermal conductivity and flexural strength of BeO are also discussed. In addition, microstructure evolution of irradiated BeO during post-irradiation annealing is summarized. This review article has important implications for the application of BeO in MMR.

Keywords

Acknowledgement

This work was funded by the National S&T Major Project (Grant No. ZX06901) and Key R&D Plan of Shandong Province (major scientific and technological innovation project, 2020CXGC010306). We appreciate the publisher for authorizing the cited content, including Elsevier and Taylor & Francis Ltd.

References

  1. W.D. Manly, Utilization of BeO in reactors, J. Nucl. Mater. 14 (1964) 3-18. https://doi.org/10.1016/0022-3115(64)90158-8
  2. W.H. Roberts, The Australian high temperature gas-cooled reactor feasibility study, J. Nucl. Mater. 14 (1964) 29-40. https://doi.org/10.1016/0022-3115(64)90160-6
  3. P.R. McClure, D.I. Poston, M.A. Gibson, L.S. Mason, R.C. Robinson, Kilopower project: the KRUSTY fission power experiment and potential missions, Nucl. Technol. 206 (sup1) (2020) 1-12. https://doi.org/10.1080/00295450.2019.1623617
  4. D.I. Poston, M.A. Gibson, T. Godfroy, P.R. McClure, KRUSTY reactor design, Nucl. Technol. 206 (sup1) (2020) 13-30. https://doi.org/10.1080/00295450.2020.1725382
  5. K.N. Stolte, J.A. Favorite, G.E. McKenzie, T.E. Cutler, J.D. Hutchinson, N.W. Thompson, R.G. Sanchez, Benchmark of the Kilowatt reactor using stirling TechnologY (KRUSTY) component critical configurations, Nucl. Technol. (2021) 1-19.
  6. B.S. Hickman, A.W. Pryor, The effect of neutron irradiation on beryllium oxide, J. Nucl. Mater. 14 (1964) 96-110. https://doi.org/10.1016/0022-3115(64)90166-7
  7. A. Aitkaliyeva, L. He, H. Wen, B. Miller, X.M. Bai, T. Allen, 7 - irradiation effects in Generation IV nuclear reactor materials, in: P. Yvon (Ed.), Structural Materials for Generation IV Nuclear Reactors, Woodhead Publishing, 2017, pp. 253-283.
  8. G.S. Was, S. Taller, Z. Jiao, A.M. Monterrosa, D. Woodley, D. Jennings, T. Kubley, F. Naab, O. Toader, E. Uberseder, Resolution of the carbon contamination problem in ion irradiation experiments, Nucl. Instrum. Methods Phys. Res. B. 412 (2017) 58-65. https://doi.org/10.1016/j.nimb.2017.08.039
  9. K. Nordlund, Historical review of computer simulation of radiation effects in materials, J. Nucl. Mater. 520 (2019) 273-295. https://doi.org/10.1016/j.jnucmat.2019.04.028
  10. V. Barabash, G. Federici, M. Rodig, L.L. Snead, C.H. Wu, Neutron irradiation effects on plasma facing materials, J. Nucl. Mater. 283-287 (2000) 138-146. https://doi.org/10.1016/S0022-3115(00)00203-8
  11. A.R. Palmer, D. Roman, H.J. Whitfield, The diffusion of tritium from irradiated beryllium oxide powders, J. Nucl. Mater. 14 (1964) 141-146. https://doi.org/10.1016/0022-3115(64)90170-9
  12. C.G. Collins, Radiation effects in BeO, J. Nucl. Mater. 14 (1964) 69-86. https://doi.org/10.1016/0022-3115(64)90164-3
  13. M. Wroblewska, D. Blanchet, A. Lyoussi, P. Blaise, J. Jagielski, Z. Marcinkowska, A. Boettcher, T. Machtyl, M. Januchta, I. Wilczek, A review and analysis of the state of the art on beryllium poisoning in research reactors, Ann. Nucl. Energy 163 (2021), 108540.
  14. Y. Sugimoto, M. Nakamichi, J.H. Kim, H. Kurata, M. Haruta, M. Miyamoto, Deuterium and helium desorption behavior and microstructure evolution in beryllium during annealing, J. Nucl. Mater. 544 (2021), 152686.
  15. N. Zimber, P. Vladimirov, The role of grain boundaries and denuded zones for tritium retention in high-dose neutron irradiated beryllium, J. Nucl. Mater. 568 (2022), 153855.
  16. B. Cheng, E.M. Duchnowski, D.J. Sprouster, L.L. Snead, N.R. Brown, J.R. Trelewicz, Ceramic composite moderators as replacements for graphite in high temperature microreactors, J. Nucl. Mater. 563 (2022), 153591.
  17. K. Li, L. Qian, X. Li, Y. Ma, W. Zhou, BeO utilization in reactors for the improvement of extreme reactor environments - a review, Front. Energy Res. 9 (2021), 669832.
  18. X. Zhou, Y. Tang, Z. Lu, J. Zhang, B. Liu, Nuclear graphite for high temperature gas-cooled reactors, New Carbon. Mater. 32 (3) (2017) 193-204. https://doi.org/10.1016/S1872-5805(17)60116-1
  19. V. Mehta, P. McClure, D. Kotlyar, Selection of a space reactor moderator using lessons learned from SNAP and ANP programs, AIAA Propul. Energy 2019 Forum (2019) 1-16, https://doi.org/10.2514/6.2019-4451. Indianapolis, United States.
  20. L. Kaplan, G.R. Ringo, K.E. Wilzbach, Thermal neutron absorption cross section of deuterium, Phys. Rev. 87 (1952) 785-786. https://doi.org/10.1103/PhysRev.87.785
  21. E.T. Jurney, P.J. Bendt, J.C. Browne, Thermal neutron capture cross section of deuterium, Phys. Rev. C 25 (1982) 2810-2811. https://doi.org/10.1103/PhysRevC.25.2810
  22. L.L. Snead, D. Sprouster, B. Cheng, N. Brown, C. Ang, E.M. Duchnowski, X. Hu, J. Trelewicz, Development and potential of composite moderators for elevated temperature nuclear applications, J. Asian Ceram. Soc. 10 (1) (2022) 9-32. https://doi.org/10.1080/21870764.2021.1993592
  23. R.V. Houten, W.G. Baxter, Titanium, zirconium, and yttrium hydrides as space shielding materials, J. Spacecraft Rockets 2 (3) (1965) 469-472. https://doi.org/10.2514/3.28212
  24. J.M. Beeston, Beryllium metal as a neutron moderator and reflector material, Nucl. Eng. Des. 14 (3) (1971) 445-474. https://doi.org/10.1016/0029-5493(70)90161-5
  25. L.L. Snead, S.J. Zinkle, Use of beryllium and beryllium oxide in space reactors, AIP Conf. Proc. 746 (2005) 768-775.
  26. F. Daniels, Suggestions for a High-Temperature Pebble Pile, Report MUC-FD-8, Oak Ridge National Laboratory, 1944.
  27. M.T. Simnad, The early history of high-temperature helium gas-cooled nuclear power reactors, Energy 16 (1-2) (1991) 25-32. https://doi.org/10.1016/0360-5442(91)90084-Y
  28. I. Pioro, P. Kirillov, Generation IV nuclear reactors as a basis for future electricity production in the world, Mater. Processes Energy (2013) 818-830.
  29. Z. Gholamzadeh, F. Khoshahval, M.A. Mozafari, A.J. Vaziri, Computational investigation of Tehran research reactor graphite reflector replacement with Be, BeO or D2O and its impacts on thermal neutron flux enhancement, Int. J. Nucl. Energy Sci. Technol. 13 (4) (2019) 350-371. https://doi.org/10.1504/IJNEST.2019.106054
  30. S. Dawahra, K. Khattab, G. Saba, Investigation of BeO as a reflector for the low power research reactor, Prog. Nucl. Energy 81 (2015) 1-5. https://doi.org/10.1016/j.pnucene.2014.12.001
  31. M. Abdullah, M. Arshad, S. Pervez, K.M. Akhtar, Beryllium Reflector Elements for PARR-1, Report PINSTECH-163, Pakistan Institute of Nuclear Science & Technology, 1999.
  32. B.P. Nam, H.T. Nghiem, N.N. Dien, L.V. Vinh, Calculation of neutronic characteristics in different reflector materials with a 15-MWtreactor core using VVR-KNfuel type, Nucl. Sci. Tech. 7 (4) (2017), 09-15. https://doi.org/10.53747/jnst.v7i4.92
  33. G. Manning, Neutronics and Associated Aspects in the Design of Small Beryllium Oxide Moderated H. T. G. C. Reactors, Report AAEC/TM534, Australian Atomic Energy Commission, 1970.
  34. D.I. Poston, M. Gibson, P. McClure, KILOPOWER REACTORS for POTENTIAL SPACE EXPLORATION MISSIONS, Nuclear and Emerging Technologies for Space, American Nuclear Society Topical Meeting, Richland, United States, 2019.
  35. K.D. Reeve, Fabrication and structure of Beryllium oxide-based fuels, J. Nucl. Mater. 14 (1964) 435-443. https://doi.org/10.1016/0022-3115(64)90209-0
  36. G.E. Christie, J. Jackson, G.A. Lyons, D.G. Cragg, F.S. Martin, Fabrication of fuelled beryllia by extrusion and sintering, J. Nucl. Mater. 14 (1964) 444-452. https://doi.org/10.1016/0022-3115(64)90210-7
  37. S. Nishigaki, K. Maekawa, Fabrication of BeO-UO2-Be fuel pellets, J. Nucl. Mater. 14 (1964) 453-458. https://doi.org/10.1016/0022-3115(64)90211-9
  38. P.G. Alfredson, R.C. Cairns, Development of coated fuel particles for beryllia-based fuels, J. Nucl. Mater. 14 (1964) 459-464. https://doi.org/10.1016/0022-3115(64)90212-0
  39. R.L. Hamner, A.T. Chapman, W.O. Harms, Fabrication development and irradiation testing of fuelled beryllium oxide, J. Nucl. Mater. 14 (1964) 465-472. https://doi.org/10.1016/0022-3115(64)90213-2
  40. G.L. Hanna, R.J. Hilditch, B.S. Hickman, The effects of fission product damage in BeO dispersion fuels, J. Nucl. Mater. 14 (1964) 473-481. https://doi.org/10.1016/0022-3115(64)90214-4
  41. R.G. Mills, J.O. Barner, D.E. Johnson, M.T. Simnad, Irradiation effects on dispersion type BeO-UO2 fuels for ebor, J. Nucl. Mater. 14 (1964) 482-486. https://doi.org/10.1016/0022-3115(64)90215-6
  42. A.R. Palmer, H.J. Whitfield, R. Clark, Release of xenon 133 on post-irradiation heating of UO2-ThO2-BeO compacts, J. Nucl. Mater. 14 (1964) 487-496. https://doi.org/10.1016/0022-3115(64)90216-8
  43. R.P. Shields, J.E. Lee Jr., W.E. Browning, Effects of Fast-Neutron Irradiation and High Temperature on Beryllium Oxide, Report ORNL-3164, Oak Ridge National Laboratory, 1962.
  44. G.W. Keilholtz, J.E. Lee Jr., R.E. Moore, Behaviour of BeO under neutron irradiation, J. Nucl. Mater. 14 (1964) 87-95. https://doi.org/10.1016/0022-3115(64)90165-5
  45. R.G. Mills, J.O. Barner, D.E. Johnson, M.T. Simnad, Irradiation effects on beryllium oxide materials, J. Nucl. Mater. 14 (1964) 125-134. https://doi.org/10.1016/0022-3115(64)90168-0
  46. F.J.P. Clarke, R.S. Wilks, D.H. Bowen, Mechanisms of irradiation-induced growth and cracking in beryllia, J. Nucl. Mater. 14 (1964) 205-207. https://doi.org/10.1016/0022-3115(64)90179-5
  47. G.W. Keilholtz, J.E. Lee Jr., R.E. Moore, Irradiation damage to sintered beryllium oxide as a function of fast-neutron dose and flux at 110, 650, and 1100 C, Nucl. Sci. Eng. 26 (3) (1966) 329-338. https://doi.org/10.13182/NSE66-A17353
  48. J.H. Chute, D.G. Walker, Direct observations of damage in neutron irradiated beryllium oxide, J. Nucl. Mater. 14 (1964) 187-194. https://doi.org/10.1016/0022-3115(64)90176-X
  49. R.S. Wilks, F.J.P. Clarke, Electron microscopy of irradiated BeO, J. Nucl. Mater. 14 (1964) 179-186. https://doi.org/10.1016/0022-3115(64)90175-8
  50. R.S. Wilks, Neutron-induced damage in BeO, Al2O3 and MgO -a review, J. Nucl. Mater. 26 (2) (1968) 137-173. https://doi.org/10.1016/0022-3115(68)90068-8
  51. B.S. Hickman, D.G. Walker, R. Hemphill, Comparison of macroscopic and X-ray growth in irradiated BeO single crystals, J. Nucl. Mater. 14 (1964) 167-174. https://doi.org/10.1016/0022-3115(64)90173-4
  52. T.M. Sabine, An interpretation of some X-ray diffraction effects in irradiated beryllium oxide, J. Nucl. Mater. 14 (1964) 159-166. https://doi.org/10.1016/0022-3115(64)90172-2
  53. R.E. Stoller, The role of cascade energy and temperature in primary defect formation in iron, J. Nucl. Mater. 276 (1-3) (2000) 22-32. https://doi.org/10.1016/S0022-3115(99)00204-4
  54. T.L. Daulton, M.A. Kirk, L.E. Rehn, In situ transmission electron microscopy study of ion-irradiated copper: comparison of the temperature dependence of cascade collapse in fcc- and bcc-metals, J. Nucl. Mater. 276 (1-3) (2000) 258-268. https://doi.org/10.1016/S0022-3115(99)00185-3
  55. B. Gurau, J. Nash, Reflector and Shield Material Properties for Project Prometheus (U), Report MDO-723-0042, Knolls Atomic Power Laboratory, Lockheed Martin, 2005.
  56. R.C. Rau, Electron microscopy of irradiated BeO, J. Nucl. Mater. 11 (3) (1964) 320-332. https://doi.org/10.1016/0022-3115(64)90023-6
  57. G. Sidhu, Report UCID-15285, in: Irradiation Effects in BeO and Comparison of BeO and MgO as Potential Reflector Materials, Lawrence Radiation Laboratory, University of California, 1967.
  58. D.G. Walker, R.M. Mayer, B.S. Hickman, X-ray diffraction studies of irradiated beryllium oxide, J. Nucl. Mater. 14 (1964) 147-158. https://doi.org/10.1016/0022-3115(64)90171-0
  59. B.S. Hickman, T.M. Sabine, R.A. Coyle, X-ray diffraction studies of irradiated beryllium oxide, J. Nucl. Mater. 6 (2) (1962) 190-198. https://doi.org/10.1016/0022-3115(62)90269-6
  60. Y.N. Makurin, I.R. Shein, M.A. Gorbunova, V.S. Kiiko, A.L. Ivanovskii, First-principle quantum-chemical calculations of several thermomechanical parameters of beryllium ceramics, Refract. Ind. Ceram. 47 (5) (2006) 310-313. https://doi.org/10.1007/s11148-006-0115-9
  61. G.P. Akishin, S.K. Turnaev, V.Y. Vaispapir, M.A. Gorbunova, Y.N. Makurin, V.S. Kiiko, A.L. Ivanovskii, Thermal conductivity of beryllium oxide ceramic, Refract. Ind. Ceram. 50 (6) (2009) 465-468. https://doi.org/10.1007/s11148-010-9239-z
  62. J.J. Quinn, K.S. Yi, Solid State Physics: Principles and Modern Applications, Springer, Dordrecht Heidelberg London New York, 2009.
  63. J.A. Desport, J.A.G. Smith, Irradiation-induced growth in oxides of beryllium, magnesium and aluminium, J. Nucl. Mater. 14 (1964) 135-140. https://doi.org/10.1016/0022-3115(64)90169-2
  64. Y. Sugimoto, M. Nakamichi, J.H. Kim, H. Kurata, M. Haruta, M. Miyamoto, Deuterium and helium desorption behavior and microstructure evolution in beryllium during annealing, J. Nucl. Mater. 544 (2021), 152686.
  65. M. Oberkofler, Ch Linsmeier, Deuterium release from implanted beryllium and beryllium oxide, J. Nucl. Mater. 415 (1) (2011) S724-S727. https://doi.org/10.1016/j.jnucmat.2010.11.015