DOI QR코드

DOI QR Code

Deep-learning-based system-scale diagnosis of a nuclear power plant with multiple infrared cameras

  • Ik Jae Jin (Department of Nuclear Engineering Ulsan National Institute of Science and Technology (UNIST)) ;
  • Do Yeong Lim (Department of Nuclear Engineering Ulsan National Institute of Science and Technology (UNIST)) ;
  • In Cheol Bang (Department of Nuclear Engineering Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2022.04.26
  • Accepted : 2022.10.12
  • Published : 2023.02.25

Abstract

Comprehensive condition monitoring of large industry systems such as nuclear power plants (NPPs) is essential for safety and maintenance. In this study, we developed novel system-scale diagnostic technology based on deep-learning and IR thermography that can efficiently and cost-effectively classify system conditions using compact Raspberry Pi and IR sensors. This diagnostic technology can identify the presence of an abnormality or accident in whole system, and when an accident occurs, the type of accident and the location of the abnormality can be identified in real-time. For technology development, the experiment for the thermal image measurement and performance validation of major components at each accident condition of NPPs was conducted using a thermal-hydraulic integral effect test facility with compact infrared sensor modules. These thermal images were used for training of deep-learning model, convolutional neural networks (CNN), which is effective for image processing. As a result, a proposed novel diagnostic was developed that can perform diagnosis of components, whole system and accident classification using thermal images. The optimal model was derived based on the modern CNN model and performed prompt and accurate condition monitoring of component and whole system diagnosis, and accident classification. This diagnostic technology is expected to be applied to comprehensive condition monitoring of nuclear power plants for safety.

Keywords

Acknowledgement

This work was supported by the A.I. Incubation Project Fund (1.220043.01) of UNIST(Ulsan national Institute of Science & Technology), and partly by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.2021M2D2A1A03048950) and KOREA HYDRO & NUCLEAR POWER CO., LTD (No. 2020-Tech-17).

References

  1. K. Moshkbar-Bakhsayesh, M. Ghofrani, Transient identification in nuclear power plants: a review, Prog. Nucl. Energy 67 (2013) 23-32.  https://doi.org/10.1016/j.pnucene.2013.03.017
  2. M.M. Najafabadi, F. Villanustre, T.M. Khoshgoftaar, Deep learning applications and challenges in big data analytics, Journal of Big Data 2 (2015) 1. 
  3. H.M. Park, J.H. Lee, K, D. Kim, Wall temperature prediction at critical heat flux using a machine learning model, Ann. Nucl. Energy 141 (2020), 107334. 
  4. T.V. Santosh, G. Vinod, R.K. Saraf, A.K. Ghosh, H.S. Kushwaha, Application of artificial neural networks to nuclear power plant transient diagnosis, Reliab. Eng. Syst. Saf. 92 (2007) 1468-1472.  https://doi.org/10.1016/j.ress.2006.10.009
  5. H.A. Saeed, M. Peng, H. Wang, B. Zhang, Novel fault diagnosis scheme utilizing deep learning networks, Prog. Nucl. Energy 118 (2020), 103066. 
  6. G. Lee, S.J. Lee, C. Lee, A convolutional neural network model for abnormality diagnosis in a nuclear power plant, Appl. Soft Comput. 99 (2020), 106874. 
  7. S. Bagavathiappan, B.B. Lahiri, T. Saravanan, J. Philip, T. Jayakumar, Infrared thermography for condition monitoring - a review, Infrared Phys. Technol. 60 (2013) 35-55.  https://doi.org/10.1016/j.infrared.2013.03.006
  8. S. Albawi, T.A. Mohammed, S. Al-Zawi, Understanding of a convolutional neural network, in: 2017 International Conference On Engineering And Technology (ICET), Antalya, Turkey, 2017. 
  9. O. Janssens, R. Van de Walle, M. Loccufier, S. Van Hoecke, Deep learning for infrared thermal image based machine health monitoring, IEEE/ASME Transactions and Mechatronics 99 (2018) 151-159.  https://doi.org/10.1109/TMECH.2017.2722479
  10. J.S. Kim, K.N. Choi, S.W. Kang, Infrared thermal image-based sustainable fault detection for electrical facilities, Sustainability 13 (2021) 557. 
  11. A. Nasiri, A. Taheri-Garavand, M. Omid, G.M. Carlomagno, S.W. Kang, Intelligent fault diagnosis of cooling radiator based on deep learning analysis of infrared thermal images, Appl. Therm. Eng. 163 (2019), 114410. 
  12. J. Yang, W. Wang, G. Lin, Q. Li, Y. Sun, Y. Sun, Infrared thermal imaging-based crack detection using deep learning, in: IEEE Access, vol. 7, 2019, pp. 182060-182077.  https://doi.org/10.1109/ACCESS.2019.2958264
  13. K.M. Kim, I.C. Bang, Design and operation of the transparent integral effect test facility, URI-LO for nuclear innovation platform, Nucl. Eng. Technol. 53 (2021) 776-792.  https://doi.org/10.1016/j.net.2020.08.006
  14. M. Ishii, I. Kataoka, Scaling laws for thermal-hydraulic system under single phase and two-phase natural circulation, Nucl. Eng. Des. 81 (1984) 411-425.  https://doi.org/10.1016/0029-5493(84)90287-5
  15. K.M. Kim, I.C. Bang, Integral Effect Test in Visualization Basis 3D Printed Test Facility for Improved Application of Innovative Technology, International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH-18), Portland, USA, 2019. 
  16. X.G. Yu, H.S. Park, Y.S. Kim, K.H. Kang, S. Cho, K.Y. Choi, Systematic analysis of a station blackout scenario for APR1400 with test facility ATLAS and MARS code from scaling viewpoint, Nucl. Eng. Des. 259 (2013) 205-220.  https://doi.org/10.1016/j.nucengdes.2013.03.005
  17. K.H. Lee, B.U. Bae, Y.S. Kim, B.J. Yun, J.H. Chun, G.C. Park, An integral loop test and MARS code analysis for a DVI line break LOCA in the APR1400, Nucl. Eng. Des. 238 (2008) 3336-3347.  https://doi.org/10.1016/j.nucengdes.2008.06.018
  18. S. Kim, H.Y. Jun, Analysis of an ATLAS 6-in. cold-leg break simulation with MARS code, Ann. Nucl. Energy 63 (2014) 268-275.  https://doi.org/10.1016/j.anucene.2013.05.034
  19. S.Y. Park, K.I. Ahn, Comparative analysis of station blackout accident progression in typical PWR, BWR, and PHWR, Nucl. Eng. Technol. 44 (2012) 311-322.  https://doi.org/10.5516/NET.03.2011.046
  20. A. Proꠑsek, L. Cizelj, Long-term station blackout accident analysis of a PWR with RELAP5/MOD3.3, Science and Technology of Nuclear Installations 2013 (2013), 851987. 
  21. A. Canziani, A. Paszke, E. Culurciello, An Analysis of Deep Neural Network Models for Practical Application, 2016, 07678 arXiv preprint arXic:1605. 
  22. A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks? Communications of the ACM 60 (6) (2012) 84-90.  https://doi.org/10.1145/3065386
  23. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR), Boston, USA, 2015. 
  24. K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014 arXiv:1409.1556. 
  25. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Nevada, 2016. 
  26. G. Huang, Z. Liu, L. Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR), Honolulu, Hawaii, 2017. 
  27. S. Ruder, An Overview of Gradient Descent Optimization Algorithms, 2016 arXiv preprint arXiv:1609.04747. 
  28. C. Sammut, G.I. Webb (Eds.), Encyclopedia of Machine Learning, Springer, New York, 2011. 
  29. M. Vakili, M. Ghamsari, M. Rezaei, Performance Analysis and Comparison of Machine and Deep Learning Algorithms for IoT Data Classification, 2020 arXiv preprint arXiv:2001.09636. 
  30. R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: visual explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618-626.