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ABSTRACT

This study is to find a method to learn engine sound after the start-up of a diesel generator installed in
nuclear power plant with an unsupervised deep learning algorithm (CNN autoencoder) and a new
method to predict the failure of a diesel generator using it. In order to learn the sound of a diesel
generator with a deep learning algorithm, sound data recorded before and after the start-up of two diesel
generators was used. The sound data of 20 min and 2 h were cut into 7 s, and the split sound was
converted into a spectrogram image. 1200 and 7200 spectrogram images were created from sound data
of 20 min and 2 h, respectively. Using two different deep learning algorithms (CNN autoencoder and
binary classification), it was investigated whether the diesel generator post-start sounds were learned as
normal. It was possible to accurately determine the post-start sounds as normal and the pre-start sounds
as abnormal. It was also confirmed that the deep learning algorithm could detect the virtual abnormal
sounds created by mixing the unusual sounds with the post-start sounds. This study showed that the
unsupervised anomaly detection algorithm has a good accuracy increased about 3% with comparing to
the binary classification algorithm.
© 2023 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The diesel generator installed in the nuclear power plant is
automatically started in the event of an external power loss during
reactor output operation, and functions to supply power to safety-
related facilities to safely stop the reactor. In addition, during
decommissioning of the nuclear power plant, it is automatically
started in case of loss of external power, and it still plays an
important role because it supplies power to the cooling facility for
cooling the spent fuel. In all nuclear power plants, at least two
diesel generators are installed per reactor unit, and in case of an
emergency, even if one unit fails due to some unexpected cause, the
remaining unit is started. Diesel generators are designed with a
multi-defense concept to adequately respond to power plant
emergencies. Since the diesel generator is an important facility not
only during operation of a nuclear power plant but also during
decommissioning, periodic diagnosis is essential.

Currently, the failure detection method for diesel generators in
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nuclear power plants was developed by the Korea Hydro & Nuclear
Power Research Institute for about 7 years from 2006 to 2013. Ac-
cording to related references, the diesel engine condition diagnosis
system consists of measurement sensors, data acquisition system,
and main controller. The pressure sensor measures the explosion
pressure inside the engine, and the vibration sensor and ultrasonic
sensor monitor the operation status of the valves. The temperature
sensor measures the temperature of the exhaust gas, and the tach
sensor detects the measurement time of all measurement signals.
The data acquisition system supplies power to the installed sensors,
amplifies and filters the measured signals, and converts analog-to-
digital signals. The main controller manages the test data received
from the data acquisition system and the operating variables of
each diesel engine and auxiliary systems as a database using the
engine condition diagnosis program, and evaluates the status of the
diesel engine and auxiliary systems based on these data [1-3].
Recently, Al technology is rapidly developing, and methods for
detecting machine failures using deep learning algorithms based
on sound are being actively studied. Acommonly used method is to
convert a sound signal recorded for each machine state into a
spectrogram image and learn it with Convolution Neural Network
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(CNN) [4—6] or Deep Neural Network (DNN) [7] algorithm to di-
agnose failures with increasing accuracies between 2% and 30%. In
addition, there is a method for diagnosing a failure using CNN [8,9],
DNN [10], or Long Short-Term Memory (LSTM) [11] algorithm by
converting the sound signal into a spectrum where the character-
istics of the frequency domain can be easily seen. And there is a
method that uses both sound and vibration signals as input signals
and uses the DNN [12] or CNN [13] algorithm. Finally, there is also a
way to use the CNN algorithm by receiving sound from several
microphones and composing the input with multiple channels [14].
In this study, machine failure was diagnosed using commonly used
spectrogram images and algorithms. However, there are limitations
for directly applying these techniques into emergence diesel gen-
erators (EDGs) for nuclear power plants: 1) the diagnostic perfor-
mance was not enough verified for high-powered diesel generators
such as EDG; 2) the abnormal datasets for the machine learning are
not enough in EDGs of nuclear power plants.

Therefore, in this study, the diagnostic performances of an un-
supervised deep learning algorithm (CNN autoencoder) are evalu-
ated and compared with the method of general binary classification
by deep learning technique. First, the two sounds generated when
the two large-powered diesel generators were started were pre-
pared. By learning the sounds of two diesel generators with two
deep learning algorithms, it was investigated whether the sound
during operation (normal) and the sound before starting
(abnormal) could be distinguished. In addition, five unusual sounds
(pistol, cannon, siren, car crash, and explosion) were mixed with
the diesel generator post-start sounds to create virtual abnormal
sounds. It was confirmed whether these virtual abnormal sounds
could be detected by a deep learning algorithm. These virtual
abnormal sounds can be assumed to be abnormal engine sounds or
abnormal sounds generated in the field while the diesel generator
is running. It was checked whether these virtual abnormal sounds
could be detected as abnormal with the learned deep learning
algorithm.

2. Method
2.1. Overview of proposed diagnosis system

As shown in Fig. 1, diagnosis of the existing diesel generator uses
sensors such as pressure sensor, vibration sensor, ultrasonic sensor,
temperature sensor, and tach sensor to monitor the operating
status of the diesel engine and auxiliary equipment, and to find
faults using a diagnostic program. This method has the advantage
of being able to detect component or system failure by observing
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whether the value of the operating variable detected by a specific
sensor is out of the normal range or shows a specific waveform in
the graph. However, this method has strong dependency on the
sensors in the diesel generators in analyzing many driving variables
and related graphs, and thus, some advanced technologies should
be introduced for independently verifying the performance of EDG.

The diesel generator failure diagnosis method proposed in this
paper is a method of diagnosing the failure by analyzing the sound
generated during operation of the diesel generator with an unsu-
pervised deep learning algorithm. As a deep learning algorithm, it
uses an autoencoder algorithm, which is frequently used for failure
detection in fault detections [15]. This approach stores the sound
generated from before starting to after stopping the diesel gener-
ator through a microphone, converts it into a spectrogram image,
uses it as input data, and learns with a deep learning algorithm. It
was checked whether a failure was detected by inputting virtual
abnormal sounds that could occur during operation of a diesel
generator into the learned deep learning algorithm. This method is
a new method that can detect failure independently of the existing
failure detection method. Using this method, it is possible to detect
or predict the failure of a diesel generator only with sound, and
when used with the existing failure method, more precise failure
diagnosis is possible.

2.2. Overview of deep learning algorithm

The CNN autoencoder consists of an encoder that compresses
the input X to a low dimension and a decoder that restores it back
to its original size as shown in Fig. 2. The autoencoder performs
learning so that the difference between the input image X and the
output image X' (restored X) becomes smaller, and in the process,
the features of the input data are extracted. Autoencoder is an
unsupervised learning method that performs learning only with
samples corresponding to normal sounds. When normal samples
are used as both the input and the output for training the
autoencoder-based neural network, the difference between input
and output is small, and when abnormal samples are input, the
difference between input and output is large. Here, the difference
between the input and the output is called the reconstruction error.
After training the autoencoder, a threshold value is set to distin-
guish between normal and abnormal samples. If the reconstruction
error of the input sample is greater than the threshold value, it is
judged as abnormal sound [15].

The structure of the CNN autoencoder used in this study is
shown as given in Table 1. As the input of the autoencoder, the
original images are resized to (96, 96, 4) [16,17]. So the size of the

Data Main
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Fig. 1. Proposed fault diagnosis method of diesel generator.
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Fig. 2. Schematic of CNN autoencoder.

Table 1
Structure of CNN autoencoder.

Input The image of the (96, 96, 4) shape

Encoder Conv2D (16, (3, 3), padding = 'same’, activation = 'relu’, input_shape = (96, 96, 4))
MaxPooling2D (pool_size = (4, 4), padding = 'same")
Conv2D (8, (3, 3), activation = 'relu’, padding = 'same")
MaxPooling2D (pool_size = (4, 4), padding = 'same")
Conv2D (3, (3, 3), activation = 'relu’, padding = 'same’)
MaxPooling2D (pool_size = (2, 2), padding = 'same")

Decoder Conv2D (3, (3, 3), activation = 'relu’, padding = 'same")
UpSampling2D ((2, 2))
Conv2D (8, (3, 3), activation = 'relu’, padding = 'same")
UpSampling2D ((4, 4))
Conv2D (16, (3, 3), activation = 'relu’, padding = 'same")
UpSampling2D ((4, 4))
Conv2D(4, (3, 3), activation = 'sigmoid’, padding = 'same")

Learning optimizer = 'adam’, loss = 'mean_squared_error’

Output The reconstructed image of the (96, 96, 4) shape

original image is reduced to the size of the input image using the
resize() function. The encoder that compresses the input image
consists of three-step convolution and pooling layers, and com-
presses the input image of size (96, 96, 4) to size (3, 3, 3). The
decoder consists of three-step convolution and upsampling layers,
and restores data compressed to the size (3, 3, 3) to the original size
(96, 96, 4) [16,17].

For the comparison of the proposed diagnostic method, as
shown in Fig. 3, the CNN binary classification algorithm is selected
as a supervised learning method that classifies two images with
different features as O or 1, respectively. In this study, the abnormal
sample is set to 0 and the normal sample is set to 1. Therefore, if the

output of any sample input to the learned binary classification al-
gorithm is lower than 0.5, it is classified as abnormal, and if it is
greater than 0.5, it is classified as normal [18].

As shown in Table 2, the CNN binary classification algorithm
extracts the features through three-step convolution and pooling
layers, and then classifies two types of data through a fully con-
nected layer. In the convolutional layer, 'relu’ was used as the
activation function, and in the fully connected layer, droupout(0.5)
and two activation functions('relu’ and 'sigmoid') were used. The
size of the original image was changed to the size of (96, 96, 4) or
(150, 150, 4) using the resize() function and used as an input [7].
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Fig. 3. Schematic of CNN binary classification.
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Table 2
Structure of CNN binary classification.
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Input

The image of the (96, 96, 4) shape

Body

Activation(‘relu’)
MaxPooling2D (pool_size = (2, 2))
Conv2D (32, (3, 3))
Activation(‘relu’)

MaxPooling2D (pool_size = (2, 2))
Conv2D (64, (3, 3))
Activation(‘relu’)

MaxPooling2D (pool_size = (2, 2))

Flatten ()
Dense (64)

Activation(‘relu’)

Dropout (0.5)
Dense (1)

Conv2D (32, (3, 3), input_shape = (96, 96, 4))

Activation(‘sigmoid")

Learning

Output 0-1

optimizer = 'adam’, loss = ‘binary_crossentropy', metrics = [‘accuracy’]

2.3. Input data and preprocessing

2.3.1. Samples of sounds before and after the diesel generator start-
up

To learn the sound of a diesel generator with a deep learning
algorithm, samples were made by cutting the recorded sound into
7-s-long sounds as shown in Table 3. In this study, the sounds of
two diesel generators were used, one was a 20-min recording and
the other was a 2-h recording. Materials recorded in stereo format
must be converted into mono format WAV files in advance. In the
case of a 20-min sound, 7-s-long samples were made at 1-
s intervals to make a total of 1200 samples (mono-type WAV
files) as shown in Table 3. A total of 7200 samples (mono-type WAV
files) were made for the 2-h sound. However, in order to learn with
a deep learning algorithm, sound must be converted into an image.
In this study, the method of converting sound into spectrogram
image was used. Spectrogram is one of the methods of analyzing
sound. The x-axis represents time, the y-axis represents frequency,
and the z-axis represents amplitude (indicated by color) [3,4]. Here,
the x and y axes are linear scales, and the z axes are log scales. In
addition, when creating a spectrogram image, Fourier transform is
performed. At this time, the window length is 20 msec, the overlap
length is 5 msec, and the window shape is ‘Hann’. The spectrogram
image is saved as a PNG file with a size of 465x442 x 32b (sampling
rate 44.1 kHz) or 466x481 x 32b (sampling rate 48 kHz). This study
was conducted using Keras module in Windows 10(64-bit), Python
ver.3.8.8(64-bit), and GPU environment (NVIDIA GeForce GTX 1660
Ti, CUDA ver.11.4, cuDNN ver.8.2.1).

2.3.2. Samples of virtual abnormal sounds

The sound samples after the diesel generator start-up and 5
unusual sounds were mixed to make 10 abnormal sound samples
for each unusual sound. By mixing the normal sound with the
unusual sound, it can be assumed that the engine sound is
abnormal during the operation of the diesel generator or the
abnormal sound occurs in the field. As shown in Table 4, new
abnormal sound samples were created by mixing the normal
sounds of diesel generators A and B and 5 unusual sounds.

3. Result
3.1. Training result of CNN autoencoder algorithm

In diesel generator A, out of 1200 samples, 600 for train, 150 for
test, and the remaining 450 were used for verification after
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completion of training. In diesel generator B, 3600 of the total 7200
samples were used for train, 600 for test, and 2560 for verification.
After the sensitivity studies that the cost functions are converged at
eacg specific epoch, autoencoder was trained with batch size = 30,
epoch = 20 in diesel generator A, and batch size = 50, epoch = 15 in
generator B. As shown in Table 5, the largest reconstruction errors
in generators A and B were 0.002078 and 0.001792, and the
threshold values were set to 0.0021 and 0.0018, respectively, as
values larger than those reconstruction errors. Therefore, normal
and abnormal samples can be detected based on these threshold
values. The reconstruction error of the normal sample is less than or
equal to the threshold value, and the reconstruction error of the
abnormal sample is greater than the threshold value.

- Normal sample (normal sound): Reconstruction
error < Threshold value
- Abnormal sample (abnormal sound): Reconstruction

error > Threshold value

3.1.1. Verification for sounds before and after starting point

The starting point of diesel generator A is 58 s, and the starting
point of diesel generator B is 420 s. Therefore, how the learned
autoencoder judges the samples of the sounds before and after the
starting point of the diesel generators A and B were recorded as
shown in Table 6. In the case of diesel generator A, sample numbers
0 to 60 and 117 were determined to be abnormal, and the
remaining samples were determined to be normal. Since the
starting time is 58 s, it can be considered appropriate to judge the
samples 59—60 as abnormal, but it can be seen as a singularity
because the sample 117 was expected to be judged as normal. In the
case of diesel generator B, samples O to 421 were determined to be
abnormal, and the rest were determined to be normal. Since the
starting time is 420 s, the results determined as abnormal up to
sample 421 can be considered appropriate.

3.1.2. Verification for sounds after start-up

Table 7 shows how the learned autoencoder judges the un-
learned sounds after the diesel generator startup. In the case of
diesel generator A, since the reconstruction error was lower than
the threshold value for 210 samples corresponding to the sound
after start-up, all were determined to be normal. In the case of
diesel generator B, as shown in Table 8, the reconstruction error
was higher than the threshold value for 6 out of 2560 samples of
the sound after start-up, so it was determined to be abnormal.
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Table 3
Input data generation for diesel generator sound learning.
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Diesel Generator A

Waveform or Spectrogram Quantity File Type Length or Size
Overall Sound 1 Mono-WAV 20 min
Split Sound 1200 Mono-WAV 7s
Input Image 1200 PNG 465 x 442 x 32b
Diesel Generator B

Waveform or Spectrogram Quantity File Type Length or Size
Overall Sound oo e teos  wise  wew w2009 1 Mono-WAV 20 min

05

05
Split Sound § 10 20 s “w 0 " ” 7200 Mono-WAV 7s

as
Input Image 7200 PNG 466 x 481 x 32b

3.2. Training result of CNN binary classification algorithm

In order to learn with the binary classification algorithm, it is
also necessary to learn samples for abnormal sounds. Therefore, in
diesel generator A, out of 1200 samples, 630 samples for train (600
normal samples and 30 abnormal samples), 210 samples for test
(200 normal samples and 10 abnormal samples), and 360 samples
were used for verification. In diesel generator B, 3900 samples
(3600 normal samples and 300 abnormal samples) for train out of
7200 samples, 650 samples (600 normal samples and 50 abnormal
samples) for test, and 2650 samples were used for verification. The
binary classification algorithm was trained with batch size = 30,
epoch = 20 in diesel generator A, and batch size = 50, epoch = 15 in
generator B.

In the binary classification algorithm, abnormal samples were
trained as 0 and normal samples as 1. Therefore, if the output of the
input sample was less than 0.5, it was determined as abnormal, and
if it was greater than or equal to 0.5, it was determined as normal.
How the CNN binary classification algorithm judges the samples
used for training is shown in Table 9. In the case of diesel generator
A, it was confirmed that most of the 840 samples used for train and
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test were accurately determined as normal or abnormal. However,
only sample 117 was erroneously determined to be abnormal. In the
case of diesel generator B, it was confirmed that 4550 samples were
accurately determined as normal or abnormal.

3.2.1. Verification for sounds before and after starting point

How the learned binary classification algorithm judges the
sounds before and after the diesel generator start-up was
confirmed as shown in Table 10. The starting point of diesel
generator A was 58 s, and it was confirmed that it was determined
as normal from sample 52. However, the autoencoder determined
to be normal from sample 61. It was confirmed that the starting
point of diesel generator B was 420 s, and it was determined as
normal from sample 420. In this case, the autoencoder determined
that it was normal from sample 422.

3.2.2. Verification for sounds after start-up

It was confirmed how the learned binary classification algo-
rithm judges the unlearned sounds after the start-up of the diesel
generator. As shown in Table 11, in the case of diesel generator A,
320 normal samples were accurately determined as normal. In the
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Table 4
Virtual abnormal sounds for diesel generator A and B sound.
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Diesel Generator A

Normal Sound Unusual Sound

Virtual Sound

T

J J ‘ i »‘ii‘x”hlitﬂl“!l‘i“ |

Pistol #

Cannon -

Siren -

o Car Crash -

Explosion -

e

Diesel Generator B

Normal Sound Unusual Sound

w s "

o

s

J T

j W.mlw il

Pistol #

Cannon -

Siren -

% Car Crash -

Explosion -

case of diesel generator B, it was confirmed that only 14 samples
out of 2560 samples were incorrectly judged as abnormal. And the
output values of 14 samples that were judged incorrectly are shown
in Table 12. Here, the peculiar thing is that the 14 samples judged
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erroneously by this algorithm include all 6 samples erroneously

judged by the autoencoder.



H.-K. Jo, S.-H. Kim and C.-L. Kim Nuclear Engineering and Technology 55 (2023) 506—515

Table 5
Results of samples for train & test and settings of threshold value.
Diesel Generator Category Input Output (Recon. Error) Threshold Value
Sample No. Quantity Min Max
A Train 240-839 600 0.000936 0.002078 0.0021
Test 900-1049 150 0.000996 0.001382
B Train 440-4039 3600 0.000781 0.001792 0.0018
Test 4040-4239 600 0.000789 0.001404
5000—5199
6000—6199
Table 6
Results of samples before and after the diesel generator start-up.
Diesel Generator A Diesel Generator B
Input Output Input Output
Sample No. Start (mm:ss) End (mm:ss) Recon. Error Result? Sample No. Start (mm:ss) End (mm:ss) Recon. Error Result®
0 00:00 00:07 0.009501 F 0 00:00 00:07 0.008694 F
1 00:01 00:08 0.003808 F 1 00:01 00:08 0.007535 F
2 00:02 00:09 0.005388 F 2 00:02 00:09 0.006767 F
57 00:57 01:04 0010120 F 415 06:55 07:02 0.008301 F
58 00:58 01:05 0.009177 F 416 06:56 07:03 0.007876 F
59 00:59 01:06 0.006413 F 417 06:57 07:04 0.006343 F
60 00:60 01:07 0.002901 F 418 06:58 07:05 0.004614 F
61 00:61 01:08 0.001551 T 419 06:59 07:06 0.003460 F
62 00:62 01:09 0.001477 T 420 07:00 07:07 0.002629 F
63 00:63 01:10 0.001867 T 421 07:01 07:08 0.002056 F
: : : : : 422 07:02 07:09 0.001517 T
116 01:56 02:03 0.001641 T 423 07:03 07:10 0.000961 T
117 01:57 02:04 0.002345 F 424 07:04 07:11 0.000899 T
118 01:58 02:05 0.001436 T 425 07:05 07:12 0.000948 T
239 03:59 04:06 0.001355 T 439 07:20 07:27 0.000981 T
2 Result: T — Normal, F — Abnormal.
Table 7 algorithms, virtual abnormal sounds were first created by mixing a
Results of samples after the diesel generator start-up. normal sound with an unusual sound, and investigated whether it
Diesel Generator Input Output (Reconstruction can be detected when an abnormal sound occurs in the engine or
Error) when an unusual sound occurs in the field while driving a diesel
sample No. Quantity Min Max generator. For example, 10 virtual abnormal sound samples were
A 840599 710 0.000988 0001590 creat.ed by mixing the siren sound with 10 normal sound samples,
1050—1199 and in the case of diesel generator B, the autoencoder and binary
B 4240-4999 2560 0.0007823 0.001772° classification algorithm correctly determined all 10 as abnormal as
5200—-5999 shown in Table 13. Overall, in the case of diesel generator A, the
6200-7199 average accuracy of detecting these virtual abnormal sounds was
3 Maximum value excluding 6 anomalous data. low, around 50%. On the other hand, diesel generator B showed

high accuracy of over 90%. In the case of diesel generator B, the
accuracy was slightly lower only for the sound of a car crash, and
100% of the other abnormal sounds were detected. Analysis showed
that the sound for the diesel generator A relatively had large noises
comparing to the sound of pistol, car crash and explosion;

3.3. Performance estimation of the anomaly detection algorithms

For verifying and comparing the performances of the

Table 8
Falsely judged samples by CNN autoencoder.

Diesel Generator B

Input Output

Sample No. Start (mm:ss) End (mm:ss) Recon. Error Result?
7117 01:58:37 01:58:44 0.001842 F

7118 01:58:38 01:58:45 0.001843 F
7119 01:58:39 01:58:46 0.001858 F

7121 01:58:41 01:58:48 0.001850 F

7122 01:58:42 01:58:49 0.001851 F

7152 01:59:12 01:59:19 0.001874 F

¢ Result: T — Normal, F — Abnormal.
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Table 9
Results of samples for train & test (CNN binary classification).
Diesel Category Input Output
Generator Sample No. Quantity Min Max
A Train Abnormal 0-29 30 0.000065 0.022862
Normal 80—-679 600 0.972010° 0.999999
Test Abnormal 30-39 10 0.004263 0.038201
Normal 700-739 200 0.999989 1.0
800—-839
900—-939
1000—-1039
1100—-1139
B Train Abnormal 0—299 300 7.243176e-09 2.401789e-05
Normal 440—-4039 3600 0.970257° 1.0
Test Abnormal 300—-349 50 5.2437e-09 2.743405e-07
Normal 4040-4239 600 1.0 1.0
5000—-5199
6000—6199
¢ Disel Generator A: sample117.png = 0.4527759.
b Disel Generator B: sample551.png = 0.873443, sample553.png = 0.827125.
Table 10
Results of samples before and after the diesel generator start-up (CNN binary Class.).
Diesel Generator A Diesel Generator B
Input Output Input Output
Sample No. Start (mm:ss) End (mm:ss) Recon. Error Result? Sample No. Start (mm:ss) End (mm:ss) Recon. Error Result®
40 00:40 00:47 0.014404 F 350 03:50 03:57 1.876e-08 F
: : H : : 351 03:51 03:58 1.264e-08 F
49 00:49 00:56 0.010443 F 352 03:52 03:59 1.077e-08 F
50 00:50 00:57 0.033435 F : : : : :
51 00:51 00:58 0.033540 F 415 06:55 07:02 6.645e-07 F
52 00:52 00:59 0.905535 T 416 06:56 07:03 9.433e-07 F
53 00:53 01:00 0.999721 T 417 06:57 07:04 6.669e-06 F
54 00:54 01:01 0.999996 T 418 06:58 07:05 4.932e-05 F
55 00:55 01:02 1.0 T 419 06:59 07:06 0.000893 F
56 00:56 01:03 1.0 T 420 07:00 07:07 0.999997 T
57 00:57 01:04 1.0 T 421 07:01 07:08 0.943151 T
58 00:58 01:05 1.0 T 422 07:02 07:09 0.992148 T
59 00:59 01:06 1.0 T 423 07:03 07:10 0.999998 T
60 01:00 01:07 0.999996 T 424 07:04 07:11 0.999989 T
61 01:01 01:08 0.999985 T 425 07:05 07:12 0.999913 T
79 01:19 01:26 0.999623 T 439 07:20 07:27 1.0 T
¢ Result: T — Normal (=0.5), F — Abnormal (<0.5).
Table 11
Results of samples after the diesel generator start-up.
Diesel Generator Input Output (0—1)
Sample No. Quantity Min Max
A 680—-699, 740—799 320 0.999979 1.0
840—-899, 940—-999
1040—1099, 1140—1199
B 4240—-4999, 5200—5999, 6200—7199 2560 0.999599° 1.0

4 Maximum value excluding 14 anomalous data.

therefore, sound-based diagnosis system should be well tested
before the applications.

Also, the accuracy of 1200 samples for diesel generator A and
7200 samples for diesel generator B with considering the original
data sizes recorded was compared as shown in Table 14 by
autoencoder and binary classification algorithm. Here, it can be
seen that from which sample is determined as normal near the
starting point of a diesel generator is slightly different depending
on the characteristics of the algorithm. A conservative approach
was taken to calculate the accuracy. In the case of diesel generator
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A, the starting time is 58 s, based on the determination of normal
from sample 58, and in the case of diesel generator B, the starting
time is 420 s, and based on the determination of normal from
sample 420 was set. When this standard is applied, the accuracy of
the autoencoder of diesel generator A is 99.7% and the accuracy of
the binary classification algorithm is 99.4%. In addition, the accu-
racy of the autoencoder of diesel generator B is 99.9% and the ac-
curacy of the binary classification algorithm is 99.8%. The results
showed that both algorithms predict well within 0.6% for dis-
tinguishing the sounds of starting and normal points; therefore, it is
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Table 12
Falsely judged samples by CNN binary classification.

Nuclear Engineering and Technology 55 (2023) 506—515

Diesel Generator B

Input Output

Sample No. Start (mm:ss) End (mm:ss) Value (0—1) Result®
7116 01:58:36 01:58:43 4.849927e-05 F
7117 01:58:37 01:58:44 5.899933e-05 F
7118 01:58:38 01:58:45 1.624109e-05 F
7119 01:58:39 01:58:46 4.120367e-05 F
7120 01:58:40 01:58:47 0.000174 F
7121 01:58:41 01:58:48 1.679705e-05 F
7122 01:58:42 01:58:49 2.941326e-05 F
7148 01:59:08 01:59:15 0.002490 F
7149 01:59:09 01:59:16 0.001557 F
7150 01:59:10 01:59:17 0.047798 F
7151 01:59:11 01:59:18 0.000534 F
7152 01:59:12 01:59:19 0.000215 F
7153 01:59:13 01:59:20 0.061836 F
7154 01:59:14 01:59:21 0.000662 F

2 Result: T — Normal (=0.5), F — Abnormal (<0.5).

Table 13
Accuracy for virtual abnormal sound samples.

No. Category Diesel Generator A Diesel Generator B
Autoencoder Binary Class. Autoencoder Binary Class.

1 Pistol 30% 30% 100% 100%

2 Cannon 80% 70% 100% 100%

3 Siren 100% 70% 100% 100%

4 Car Crash  30% 30% 70% 80%

5 Explosion  40% 40% 100% 100%
Average 56% 48% 94% 96%

Accuracy

expected that these algorithm can be utilized for checking the
normal operation.

4. Conclusion

In this study, the autoencoder-based anomaly detection algo-
rithm was introduced and compared with the binary classification
method for verifying the diagnostic performance of sounds
generated by diesel generators in nuclear power plant. The sounds
of the diesel generator were recorded and converted for the ma-
chine learning, and the performances of the two algorithms were
compared using sound samples which were not used in the ma-
chine learning. Based on the starting point, the samples for the
sound before the start were judged as abnormal, and the samples
for the sound after the start were almost exactly determined as
normal. However, since one sample is 7 s long, samples near the
starting point contain both normal and abnormal sound

characteristics, so it can be seen that some errors occur. In addition,
it was also confirmed that most of the remaining normal samples
were determined to be normal. As a result, by learning the sound
before and after start-up of the diesel generator with a deep
learning algorithm, it was possible to accurately distinguish the
sound after start-up as normal and the sound before start-up as
abnormal.

Especially, it was confirmed that, using the virtual abnormal
sound samples, it was possible to detect abnormal sounds of the
engine during operation of the diesel generator or abnormal sounds
generated in the surroundings while the engine was started. In
particular, diesel generator A had a low detection accuracy of 50%
for virtual abnormal samples, but diesel generator B showed a high
accuracy of 90% or more. Using the results of this study, it is possible
to predict engine failures by detecting engine abnormalities during
operation of diesel generators in the field or by continuously
monitoring the performance of diesel generators.

Additionally, the autoencoder sets a threshold value as a crite-
rion for discriminating between normal and abnormal sounds, and
the sensitivity of detecting abnormal sounds changes depending on
how this value is set. That is, if the threshold value is set low, even a
slight deviation from the normal sound can be detected as
abnormal. Autoencoders are useful for detecting abnormal sounds
that deviate from normal. Binary classification algorithm can find
abnormal sounds by learning from samples of normal and
abnormal sounds. However, as in the case of this diesel generator,
when there is little data on abnormal sounds, there is a difficulty in
performing supervised learning because the learning data is not
sufficient. If data on various abnormal sounds can be obtained, it
will be possible to classify abnormal sounds in detail. In other
words, if there is data in which the diesel generator sound changes

Table 14
Accuracy for diesel generator sound data.
Diesel Generator Algorithm Total Number of Samples Erroneous Samples Accuracy
No. Quantity Calculation %
A Autoencoder 1200 58—-60, 117 4 1196/1200 99.7
Binary Class. 52-57,117 7 1193/1200 99.4
B Autoencoder 7200 420, 421 8 71927200 99.9
7117-7119
7121, 7122
7152
Binary Class. 7116—-7122 14 7186/7200 99.8
7148-7154
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according to various causes, it is possible to classify various
abnormal sounds by changing to a multi-classification algorithm
instead of a binary classification. Analysis showed that the unsu-
pervised anomaly detection algorithm has a good accuracy
compared with the general classification algorithm. In addition, as
considering the applicability that there is not enough datasets on
the anomaly detection in nuclear power plants, it could be a good
option for diagnosing the fault in EDGs.
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