DOI QR코드

DOI QR Code

Condensation oscillation characteristic of steam with non-condensable gas through multi-hole sparger at low mass flux

  • Dandi Zhang (School of Mechanical Engineering, Shanghai Jiao Tong University) ;
  • Lili Tong (School of Mechanical Engineering, Shanghai Jiao Tong University) ;
  • Xuewu Cao (School of Mechanical Engineering, Shanghai Jiao Tong University)
  • Received : 2022.06.14
  • Accepted : 2022.10.01
  • Published : 2023.02.25

Abstract

To study oscillation characteristic of steam and non-condensable gas direct contact condensation through multi-hole sparger at low mass flux, a series of experiments of pure steam and mixture gas condensation have been carried out under the conditions of steam mass flux of 20-120kg/m2s, water temperature of 20-95 ℃ and mass fraction of non-condensable gas of 0-5%. The regime map of pure steam condensation through multi-hole sparger is divided into steam chugging, separated bubble, aggregated bubble and escaping aggregated bubble. The bubbles behavior of synchronization in the same hole columns and desynchronized excitation between different hole columns can be found. The coalescence effect of mixture bubbles increases with water temperature and non-condensable gas content increasing. Pressure oscillation intensity of pure steam condensation first increases and then decreases with water temperature increasing, and increases with steam mass flux increasing. Pressure oscillation intensity of mixture gas condensation decreases with water temperature and non-condensable gas content increasing, which is significantly weaker than that of pure steam condensation. The oscillation dominant frequency decreases with the rise of water temperature and non-condensable gas content. The correlations for oscillation intensity and dominant frequency respectively are developed in pure steam and mixture gas condensation at low mass flux.

Keywords

Acknowledgement

The financial support of the Leading Research Program of China National Nuclear Corporation is gratefully acknowledged.

References

  1. R.E. Gamble, T.T. Nguyen, B.S. Shiralkar, P.F. Peterson, R. Greif, H. Tabata, Pressure suppression pool mixing in passive advanced BWR plants, Nucl. Eng. Des. 204 (1-3) (2001) 321-336.  https://doi.org/10.1016/S0029-5493(00)00363-0
  2. S.N. Kim, An experimental study on the temperature distribution in IRWST, KSME Int. J. 18 (5) (2004) 820-829.  https://doi.org/10.1007/BF02990301
  3. E. Giencke, Pressure distribution due to a steam bubble collapse in a BWR pressure suppression pool, Nucl. Eng. Des. 65 (2) (1981) 175-196.  https://doi.org/10.1016/0029-5493(81)90088-1
  4. J. Laine, M. Puustinen, Condensation Pool Experiments with Steam Using DN200 Blowdown Pipe, Nordic Nuclear safety research, 2005. NKS-111. 
  5. I. Gallego-Marcos, P. Kudinov, W. Villanueva, R. Kapulla, S. Paranjape, D. Paladino, J. Laine, M. Puustinen, A. Ras€anen, L. Pyy, E. Kotro, Pool stratification and mixing induced by steam injection through spargers: CFD modeling of the PPOOLEX and PANDA experiments, Nucl. Eng. Des. 347 (2019) 67-85.  https://doi.org/10.1016/j.nucengdes.2019.03.011
  6. X. Wang, D. Grishchenko, P. Kudinov, Pre-test analysis for definition of steam injection tests through multi-hole sparger in PANDA facility, Nucl. Eng. Des. 386 (2021), 111573. 
  7. C.K. Chan, C.K. Lee, A regime map for direct contact condensation, Int. J. Multiphas. Flow 8 (1) (1982) 11-20.  https://doi.org/10.1016/0301-9322(82)90003-9
  8. S. Cho, C.H. Song, C.K. Park, S.K. Yang, M.K. Chung, Experimental study on dynamic pressure pulse in direct contact condensation of steam discharging into subcooled water, in: First Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety, 1998. 
  9. I. Aya, H. Nariai, M. Kobayashi, Pressure and fluid oscillations in vent system due to steam condensation, (I): experimental results and analysis model for chugging, J. Nucl. Sci. Technol. 17 (7) (1980) 499-515.  https://doi.org/10.1080/18811248.1980.9732617
  10. G. Gregu, M. Takahashi, M. Pellegrini, R. Mereu, Experimental study on steam chugging phenomenon in a vertical sparger, Int. J. Multiphas. Flow (88) (2017) 87-98. 
  11. K.S. Liang, P. Griffith, Experimental and analytical study of direct contact condensation of steam in water, Nucl. Eng. Des. 147 (3) (1994) 425-435.  https://doi.org/10.1016/0029-5493(94)90225-9
  12. D.D. Zhang, Z.F. Qiu, L.L. Tong, X.W. Cao, Experimental investigation on the steam condensation dynamic characteristics at low steam mass flux, Ann. Nucl. Energy 170 (2022), 108980. 
  13. M.E. Simpson, C.K. Chan, Hydrodynamics of a subsonic vapor jet in subcooled liquid, Am. Soc. Mech. Eng. J. Heat. Transfer. 104 (1982) 271-278. 
  14. D.H. Youn, K.B. Ko, Y.Y. Lee, M.H. Kim, Y.Y. Bae, J.K. Park, The direct contact condensation of steam in a pool at low mass flux, J. Nucl. Sci. Technol. 40 (10) (2003) 881-885.  https://doi.org/10.1080/18811248.2003.9715431
  15. S.J. Hong, G.C. Park, S. Cho, C.H. Song, Condensation dynamics of submerged steam jet in subcooled water, Int. J. Multiphas. Flow 39 (2012) 66-67.  https://doi.org/10.1016/j.ijmultiphaseflow.2011.10.007
  16. M. Puustinen, Combined Effects Experiments with the Condensation Pool Test Facility (POOLEX), Electronic report, NKS-148, 2007. 
  17. C.H. Song, S. Cho, T.S. Kwon, K.Y. Kim, M.K. Chung, The effect of non-condensation gas on dynamic pressure induced by steam-water direct contact condensation, Am. Soc. Mech. Eng. Pres. Ves. Pip. Div. 421 (2000) 193-199. 
  18. J.H. Lee, H.C. No, Scaling and parametric studies of condensation oscillation in an in-containment refueling water storage tank, Nucl. Sci. Eng. 144 (1) (2003) 74-85.  https://doi.org/10.13182/NSE03-A2343
  19. C.K. Park, C.H. Song, H.G. Jun, et al., Experimental investigation of steam condensation phenomena using a multihole sparger with a bottom hole, J. Nucl. Sci. Technol. 45 (9) (2008) 951-961.  https://doi.org/10.1080/18811248.2008.9711496
  20. S. Cho, S.Y. Chun, W.P. Baek, Y. Kim, Effect of multiple holes on the performance of sparger during direct contact condensation of steam, Exp. Therm. Fluid Sci. 28 (6) (2004) 629-638.  https://doi.org/10.1016/j.expthermflusci.2003.10.002
  21. S. Fukuda, Pressure variation due to vapor condensation in liquid (II): phenomena at large vapor mass flow rate, J. Atom. Energy Soc. Jpn. 24 (6) (1982) 466-474.  https://doi.org/10.3327/jaesj.24.466
  22. W.C. Li, Z.M. Meng, J.J. Wang, Z.N. Sun, Effect of non-condensable gas on pressure oscillation of submerged steam jet condensation in condensation oscillation regime, Int. J. Heat Mass Tran. 124 (2018) 141-149.  https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.068
  23. R. Moffat, Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci. 1 (1988) 3-17.  https://doi.org/10.1016/0894-1777(88)90043-X
  24. Q. Song, C.C. Zhu, B.L. Niu, The uncertainty evaluation of based 2 fast fourier transfer, Acta Metrol. Sin. 25 (3) (2004) 281-283. 
  25. N.A. Kazakis, A.A. Mouza, S.V. Paras, Experimental study of bubble formation at metal porous spargers. Effect of liquid properties and sparger characteristics on the initial bubble size distribution, Chem. Eng. J. 137 (2) (2008) 265-281.  https://doi.org/10.1016/j.cej.2007.04.040
  26. K. Tse, T. Martin, C.M. Mcfarlane, A.W. Nienow, Visualisation of bubble coalescence in a coalescence cell, a stirred tank and a bubble column, Chem. Eng. Sci. 53 (23) (1998) 4031-4036.  https://doi.org/10.1016/S0009-2509(98)00182-1
  27. M. Arinobu, Studies on the dynamic phenomena caused by steam condensation in water, NUREG/CP-0014 1 (1980) 293-297. 
  28. P.A. De With, R.K. Calay, G. D With, Three-dimensional condensation regime diagram for direct contact condensation of steam injected into water, Int. J. Heat Mass Tran. 50 (2007) 1762-1770.  https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.017
  29. R.T. Lahey, F.J. Moody, The Thermal-hydraulics of a boiling water nuclear reactor, Am. Nuclear Soc. (1993) 581-583. 
  30. M. Utamura, Pressure oscillation accompanying steam discharge into sub-cooled liquid pool, Bull. Jpn. Soc. Mech. Eng. 29 (258) (1986) 4197-4208.  https://doi.org/10.1299/jsme1958.29.4197
  31. C. Damasio, G. Fiegna, M. Malandrone, Experimental study on the unstable direct contact condensation regimes, in: Proceedings of Third International Topical Meeting on Reactor Thermal Hydraulics, 1985.