DOI QR코드

DOI QR Code

펌프젯 추진기의 공동 비공동 유동소음에 대한 수치적 연구

Numerical investigation on cavitation and non-cavitation flow noise on pumpjet propulsion

  • 구가람 (국방과학연구소) ;
  • 정철웅 (부산대학교 기계공학부) ;
  • 설한신 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 정홍석 (한국해양과학기술원 부설 선박해양플랜트연구소)
  • 투고 : 2023.03.02
  • 심사 : 2023.04.24
  • 발행 : 2023.05.31

초록

본 연구에서는 펌프젯 추진기를 대상으로 공동, 비공동 조건에서의 유동 소음원을 규명하기 위하여 추진기의 각 구성품인 덕트와 스테이터, 로터에 의한 소음 기여도를 평가하였으며, 공동과 비공동 조건에서의 소음 수준을 비교하였다. 대형 캐비테이션 터널 내 Suboff 잠수함 선형과 펌프젯 추진기를 대상으로 균일혼상류 가정의 비정상 비압축성 Reynolds averaged Navier-Stokes(RANS) 방정식을 적용하였으며, 이상 유동을 모사하기 위해 Volume of Fluid(VOF) 기법과 Schnerr-Sauer 공동 모델을 적용하였다. 유동해석 결과를 기반으로 수중방사소음을 예측하기 위해 Ffowcs Williams and Hawkings(FW-H) 방정식 기반의 음향상사법을 적용하였으며, 덕트와 스테이터, 로터로 구성된 3개의 비투과성 적분면과 추진기를 감싸는 형태의 2가지 투과성 적분면을 선정하여 소음 기여도를 평가하였다. 소음 예측결과로부터 스테이터는 전체 소음에 대한 직접적인 기여도는 낮으나 덕트와 로터에서의 유동 박리에 의한 소음원 형성에는 영향을 미치는 것을 확인하였으며, 유동이 박리되는 연직상방과 우측방향으로 소음이 크게 방사되었다. 또한 로터에서는 날개의 흡입면과 압력면 간의 압력 섭동에 의해 추진방향으로 소음이 크게 방사되었으며, 투과성적분면을 통해 체적 소음원인 공동의 효과를 반영할 수 있음을 확인하였다.

In this study, the noise contributions by the duct, stator and rotor, which are the propulsor components, are evaluated to identify the flow noise source in cavitation and non-cavitation conditions on pumpjet propulsion and the noise levels in both conditions are compared. The unsteady incompressible Reynolds averaged Navier-Stokes (RANS) equation based on the homogeneous mixture assumption is applied on the suboff submarine hull and pumpjet propeller in the cavitation tunnel, and the Volume of Fluid (VOF) method and Schnerr-Sauer cavitation model are used to describe the two-phase flow. Based on the flow simulation results, the acoustic analogy formulated by Ffowcs Williams and Hawkings (FW-H) equation is applied to predict the underwater radiated noise. The noise contributions are evaluated by using the three types of impermeable integral surface on the duct, stator and rotor, and the two types of permeable integral surface surrounding the propulsor. As a result of noise prediction, the contribution by the stator is insignificant, but it affects the generation of flow noise source due to flow separation in the duct and rotor, and the noise is predominantly radiated into the upward and right where the flow separations are. Also, the noise is radiated into the thrust direction due to pressure fluctuation between suction and pressure sides on the rotor blades, and the it can be seen that the cavitation effect into the noise can be considered through the permeable integral surface.

키워드

과제정보

본 논문은 방위사업청과 국방기술진흥연구소가 지원하는 선박해양플랜트연구소의 연구과제인 "잠수함 펌프젯 설계기술(과제번호 20-102-D00-009)"의 연구 결과 중 일부임.

참고문헌

  1. International Maritime Organization (IMO) "The Fourth IMO Greenhouse Gas Study 2020," IMO, Rep., 2020.
  2. International Maritime Organization (IMO) "Adoption of the code on noise levels on board ships," IMO, ANNEX 1, Resolution MSC.337(91), 2012.
  3. International Maritime Organization (IMO) "Adoption of amendments to the international convention for the safety of life at sea, 1974, as amended," IMO, ANNEX 2, Resolution MSC.338(91), 2012.
  4. International Maritime Organization (IMO) "Guidelines for the reduction of underwater noise from commercial shipping to address adverse impacts on marine life," IMO, MEPC.1/Circ.883, 2014.
  5. M. Altosole, M. Figari, M. Martelli, and G. Orru, "Propulsion control optimisation for emergency manoeuvres of naval vessels," Proc. 11th INEC, 631-640 (2012).
  6. J. Jang, D. Kim, M. Kim, and J. Oh, "Development of naval ship propulsion system simulator for CODLOG based ECS verification" (in Korean), JKIICE, 21, 1796-1807 (2017).
  7. K. Jun, Y. Hwan, and K. Hyoung, "CFD analysis for air cooling stack of hybrid residual heat removal system using air and sea water for ship SMR" (in Korean), Proc. KSFM, 337-338 (2020).
  8. B. Allotta, L. Pugi, F. Bartolini, A. Ridolfi, R. Costanzi, N. Monni, and J. Gelli, "Preliminary design and fast prototyping of an autonomous underwater vehicle propulsion system," Proc. IMechE part M J. Eng. Marit. Environ. 229, 248-272 (2015).
  9. G. Pan, L. Lu, and P. K. Sahoo, "Numerical simulation of unsteady cavitating flows of pumpjet propulsor," Ships and Offshore Struc. 11, 64-74 (2016).
  10. H. Li, Q. Huang, G. Pan, and X. Dong, "The transient prediction of a pre-swirl stator pump-jet propulsor and a comparative study of hybrid RANS/LES simulations on the wake vortices," Ocean Eng. 203, 107224 (2020).
  11. C. Qiu, G. Pan, Q. Huang, and Y. Shi, "Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor in oblique flow," Int. J. Nav. Archit. Ocean Eng. 12, 102-115 (2020). https://doi.org/10.1016/j.ijnaoe.2019.10.001
  12. K. Kim, I. Song, and S. Choi, "Design technique of post swirl stator in container vessels by CFD," J. Soc. Nav. Archit. Kr. 44, 93-100 (2007).
  13. B. W. McCormick and J. J. Eisenhuth, "Design and performance of propellers and pumpjets for underwater propulsion," AIAA, 1, 2348-2354 (1963). https://doi.org/10.2514/3.2065
  14. Ch. Suryanarayana, B. Satyanarayana, K. Ramji, and A. Saiju, "Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel," Int. J. Nav. Archit. Ocean Eng. 2, 24-33 (2010). https://doi.org/10.2478/IJNAOE-2013-0016
  15. Ch. Suryanarayana, B. Satyanarayana, and K. Ramji, "Performance evaluation of an underwater body and pumpjet by model testing in cavitation tunnel," Int. J. Nav. Archit. Ocean Eng. 2, 57-67 (2010). https://doi.org/10.2478/IJNAOE-2013-0020
  16. Ch. Suryanarayana, B. Satyanarayana, K. Ramji, and M. N. Rao, "Cavitation studies on axi-symmetric underwater body with pumpjet propulsor in cavitation tunnel," Int. J. Nav. Archit. Ocean Eng. 2, 185-194 (2010). https://doi.org/10.2478/IJNAOE-2013-0035
  17. E. P. Bruce, W. S. Gearhart, J. R. Ross, and A. L. Treaster, "The design of pumpjets for hydrodynamic propulsion," Fluid Mech. Acoust. Design of Turbomach. Pt. 2, 304, 795-839 (1974).
  18. O. Furuya and W. L. Chiang, "A new pumpjet design theory," Honeywell Inc Hopkins MN, ADA201353 Tech. Rep., 1988.
  19. G. Wang and X. Liu, "A potential based panel method for prediction of steady and unsteady performances of ducted propeller with stators," J. Ship Mech. 11, 333-340 (2007).
  20. D. Qin, G. Pan, S. Lee, Q. Huang, and Y. Shi, "Underwater radiated noise reduction technology using saw-tooth duct for pumpjet propulsor," Ocean Eng. 188, 106228 (2019).
  21. Y. Sun, W. Liu, and T. Li, "Numerical investigation on noise reduction mechanism of serrated trailing edge installed on a pump-jet duct," Ocean Eng. 191, 106489 (2019).
  22. Z. Rao, W. Li, and C. Yang, "Simulation of unsteady interaction forces on a ducted propeller with pre-swirl stators," Proc. SMP'13, 149-155, (2013).
  23. J. W. Ahn, H. S. Seol, H. S, Jung, and Y. H. Park, "Study of the open-water test and analysis for a pumpjet propulsor in LCT" (in Korean), J. Soc. Nav. Archit. Kr. 59, 149-156 (2022).
  24. I. R. Park, J. I. Kim, K. S. Kim, J. W. Ahn, Y. H. Park, and M. S. Kim, "Numerical analysis of the wake of a surface ship model mounted in KRISO large cavitation tunnel" (in Korean), J. Soc. Nav. Archit. Kr. 53, 494-502 (2016). https://doi.org/10.3744/SNAK.2016.53.6.494
  25. G. H. Schnerr and J. Sauer, "Physical and numerical modeling of unsteady cavitation dynamics," Proc. ICMF 1-12 (2001).
  26. C. Y. Byeon, J. I. Kim, I. R. Park, and H. S. Seol, "Resistance and self-propulsion simulations for the DARPA suboff submarine by using RANS method" (in Korean), J. Comput. Fluids Eng. Kr. 23, 36-46 (2018). https://doi.org/10.6112/kscfe.2018.23.3.036
  27. X. Wang and K. Walters, "Computational analysis of marine-propeller performance using transition-sensitive turbulence modeling," J. Fluids Eng. 134, 071107 (2012).
  28. G. Ku, S. Ryu, and C. Cheong, "Numerical investigation into cavitation flow noise of hydrofoil using quadrupole-corrected Ffowcs Williams and Hawkings equation" (in Korean), J. Acoust. Soc. Kr. 37 (2018).
  29. B. A. Singer, D. P. Lockard, and G. M. Lilley, "Hybrid acoustic predictions," Comput. Math. with Appl. 46, 647-669 (2003). https://doi.org/10.1016/S0898-1221(03)90023-X
  30. F. Farassat, "Derivation of formulations 1 and 1A of Farassat," NASA Langley Research Center Hampton, 2007.
  31. J. Ha, G. Ku, J. Cho, C. Cheong, and H. Seol, "Numerical comparative investigation on blade tip vortex cavitation and cavitation noise of underwater propeller with compressible and incompressible flow solvers" (in Korean), J. Acoust. Soc. Kr. 40, 261-269 (2021).
  32. G. Ku, J. Cho, C. Cheong, and H. Seol, "Numerical investigation of tip-vortex cavitation noise of submarine propelles using hybrid computational hydro-acoustic approach," Ocean Eng. 238, 109693 (2021).
  33. K. S. Brentner and F. Farassat, "An analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces," AIAA, 36, 1379-1386 (2012). https://doi.org/10.2514/3.13979