DOI QR코드

DOI QR Code

선형 예측 분석 기반의 딱총 새우 잡음 검출 기법

Linear prediction analysis-based method for detecting snapping shrimp noise

  • 박진욱 (창원대학교 산업기술연구원) ;
  • 홍정표 (창원대학교 정보통신공학과)
  • Jinuk Park ;
  • Jungpyo Hong (Department of Information and Communication Engineering, Changwon National University)
  • 투고 : 2023.03.02
  • 심사 : 2023.04.17
  • 발행 : 2023.05.31

초록

본 논문에서는 선형 예측 분석을 기반으로 한 딱총새우 잡음 검출을 위한 특징을 제안한다. 딱총새우는 천해에 서식하는 종으로, 높은 진폭의 신호를 생성하고 빈번하게 발생하기 때문에 수중 잡음의 주된 원인 중 하나이다. 제안된 특징은 딱총새우 잡음이 갑작스럽게 발생하고 빠르게 소멸하는 특징을 활용하기 위해 선형 예측 분석을 이용하여 정확한 잡음 구간을 검출하고 딱총새우 잡음의 영향을 줄인다. 선형 예측 분석으로 예측한 값과 실제 측정값 사이의 오차가 크기 때문에 이를 통해 효과적으로 딱총새우 구간 검출이 가능해진다. 추가적으로 제안된 특징에 일정 오경보 확률 탐지기를 결합하여 잡음 구간 검출 성능을 추가적으로 개선한다. 제안한 방법을 딱총새우 잡음 구간 검출 최신 방법으로 알려진 다층 웨이블릿 패킷 분해와 비교한 결과, 제안한 방법이 수신자 조작 특성 곡선과 곡선 아래의 면적 측면에서 성능이 평균적으로 0.12만큼 우수하였고 계산량 측면에서도 계산 복잡도가 더 낮았다.

In this paper, we propose a Linear Prediction (LP) analysis-based feature for detecting Snapping Shrimp (SS) Noise (SSN) in underwater acoustic data. SS is a species that creates high amplitude signals in shallow, warm waters, and its frequent and loud sound is a major source of noise. The proposed feature takes advantage of the characteristic of SSN, which is sudden and rapidly disappearing, by using LP analysis to detect the exact noise interval and reduce the effects of SSN. The error between the predicted and measured value is large and results in effective SSN detection. To further improve performance, a constant false alarm rate detector is incorporated into the proposed feature. Our evaluation shows that the proposed methods outperform the state-of-the-art MultiLayer-Wavelet Packet Decomposition (ML-WPD) in terms of receiver operating characteristic curve and Area Under the Curve (AUC), with the LP analysis-based feature achieving a higher AUC by 0.12 on average and lower computational complexity.

키워드

과제정보

이 논문은 2023 ~ 2024년도 창원대학교 자율연구과제 연구비 지원으로 수행된 연구결과임

참고문헌

  1. M. W. Johnson, F. A. Everest, and R. W. Young, "The role of snapping shrimp (Crangon and Synalpheus) in the production of underwater noise in the sea," Biol. Bull. 93, 122-138 (1947). https://doi.org/10.2307/1538284
  2. M. K. Wicksten and M. R. McClure, "Snapping shrimps (Decapoda: Caridea: Alpheidae) from the Dampier Archipelago, western Australia," Record of the Western Australian Museum Supplement, 73, 61-83 (2007). https://doi.org/10.18195/issn.0313-122x.73.2007.061-083
  3. F. A. Everest, R. W. Young, and M. W. Johnson, "Acoustical characteristics of noise produced by snapping shrimp," J. Acoust. Soc. Am. 20, 137-142 (1948). https://doi.org/10.1121/1.1906355
  4. T. Clynes, "5 Big ideas for fusion power: Startups, universities, and major companies are vying to commercialize a nuclear fusion reactor," IEEE Spectrum, 57, 30-37 (2020). https://doi.org/10.1109/MSPEC.2020.8976899
  5. R. Diamant and L. Lampe, "Low probability of detection for underwater acoustic communication: A review," IEEE Access, 6, 19099-19112 (2018). https://doi.org/10.1109/ACCESS.2018.2818110
  6. V. Hlebnikov, T. Elboth, V. Vinje, and L.-J. Gelius, "Noise types and their attenuation in towed marine seismic: A tutorial," Geophysics, 86, W1-W19 (2021). https://doi.org/10.1190/geo2019-0808.1
  7. S. C. Wang, Z. Q. He, K. Niu, P. Chen, and Y. Rong, "New results on joint channel and impulsive noise estimation and tracking in underwater acoustic OFDM systems," IEEE Trans. on Wireless Commun. 19, 2601-2612 (2020). https://doi.org/10.1109/TWC.2020.2966622
  8. J. D. Park and J. F. Doherty, "A steganographic app-roach to sonar tracking," IEEE J. Ocean. Eng. 44, 1213-1227 (2018). https://doi.org/10.1109/JOE.2018.2847160
  9. G. A. Tsihrintzis and C. L. Nikias, "Performance of optimum and suboptimum receivers in the presence of impulsive noise modeled as an alpha-stable process," IEEE Trans. Commun. 43, 904-914 (1995). https://doi.org/10.1109/26.380123
  10. A. Mahmood and M. Chitre, "Optimal and near-optimal detection in bursty impulsive noise," IEEE J. Ocean. Eng. 42, 639-653 (2017). https://doi.org/10.1109/JOE.2016.2603790
  11. D. A. Guimaraes, L. S. Chaves, and R. A. A. de Souza, "Snapping shrimp noise reduction using convex optimization for underwater acoustic communication in warm shallow water," Proc. ITS, 1-5 (2014).
  12. H. Kim, H. Seo, J. Ahn, and J. Chung, "Snapping shrimp noise mitigation based on statistical detection in underwater acoustic orthogonal frequency division multiplexing systems," Jpn. J. Appl. Phys. 56, 07JG02 (2017).
  13. J. Ahn, H. Lee, Y. Kim, and J. Chung, "Snapping shrimp noise detection and mitigation for underwater acoustic orthogonal frequency division multiple communication using multilayer frequency," Int. J. Nav. Archit. Ocean Eng. 12, 258-269 (2020). https://doi.org/10.1016/j.ijnaoe.2019.10.004
  14. M. A. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, New York, 2005), pp. 347-382.
  15. J. Makhoul, "Linear prediction: A tutorial review," IEEE, 63, 561-580 (1975). https://doi.org/10.1109/PROC.1975.9792
  16. W. C. Knight, R. G. Pridham, and S. M. Kay, "Digital signal processing for sonar," Proc. IEEE, 69, 1451-1506 (1981). https://doi.org/10.1109/PROC.1981.12186
  17. A. A. Winder, "II. Sonar system technology," IEEE Trans. Sonics Ultrason. SU-22, 291-332 (1975). https://doi.org/10.1109/T-SU.1975.30813
  18. R. E. Learned, W. Karl, and A. S. Willsky, "Wavelet packet based transient signal classification," Proc. IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 109-112 (1992).
  19. H. C. Song, S. M. Kim, B. N. Kim, and S. H. Nam, "Shallow-water acoustic variability experiment 2015 (SAVEX15) in the northern East China Sea," J. Acoust. Soc. Am. 140, 3012-3012 (2016).
  20. M. H. Hayes, Statistical Digital Signal Processing and Modeling (John Wiley&Sons, New York, 1996), pp. 215-279.