A NEW MODELLING OF TIMELIKE Q-HELICES

Yasin Ünlütürk*, Cumali Ekici, and Doğan Ünal

Abstract

In this study, we mean that timelike q-helices are curves whose q-frame fields make a constant angle with a non-zero fixed axis. We present the necessary and sufficient conditions for timelike curves via the q-frame to be q-helices in Lorentz-Minkowski 3 -space. Then we find some results of the relations between q-helices and Darboux q-helices. Furthermore, we portray Darboux q-helices as special curves whose Darboux vector makes a constant angle with a non-zero fixed axis by choosing the curve as one of the types of q -helices, and also the general case.

1. Introduction

There are different approaches to frame a curve such as parallel transport frame, Frenet frame, and etc. in differential geometry of curves $[2,3,4,22]$. The way to establish the quasi-frame has been firstly paved with introducing the quasi normal vector of a space curve by Coquillart [3]. Then Shin et al. has defined the quasi-normal vector for each point of the curve which lies in the plane perpendicular to the tangent of the curve at this point [17]. The local theory of space curves via q-frame has also been studied by Dede in $[4,19,20]$.

Slant helices as a kind of helices have been conceptualized and characterized by some researchers such as Izumiya and Takeuchi [6], Kula and Yayli [7], Kula et al. [8]. The notion " k-type slant helices" is related to the class of curves having a property that the scalar product of frame's vector field and a fixed axis is constant [5]. For example, general helices are type- 0 helices, and also type- 1 slant helix is one whose normal vector field makes a constant angle with a non zero fixed axis.

Received July 21, 2022. Revised January 4, 2023. Accepted January 11, 2023.
2010 Mathematics Subject Classification. 53A04.
Key words and phrases. q-frame, timelike q-helices, the relations between timelike q-helices, Darboux q-helices.
*Corresponding author

Researches are constantly increasing on k-type slant helices with their various aspects $[10,11,14,15,18]$. For instance, this topic has been studied and developed in different types of spaces such as Euclidean, Galilean, and Lorentzian spaces [1, 10, 12, 16]. Another classification called as " k-type Darboux slant helices" is based on the idea that Darboux vector, obtained by the frame fields in which curves' behaviour is taken into consideration, makes a constant angle with a non-zero fixed axis $[10,14,15,21]$.

In this work, we take timelike q-helices into consideration. By qhelices, we mean curves due to the quasi-frame (abbv. q-frame) whose vector fields' inner product with a non-zero fixed axis is constant. One by one, all types of these q-helices we study in the work are therefore classified in three dimensional Lorentz-Minkowski space. Additionally, we study Darboux q-helices by using Darboux vector obtained with respect to q -frames fields of a timelike curve. For a curve enclosed with q -frame as a general case, we reach some results for Darboux q-helices.

2. Preliminaries

The three dimensional Lorentz-Minkowski space \mathbb{E}_{1}^{3} is the real vector space \mathbb{R}^{3} equipped with

$$
g=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{3},
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ is a rectangular coordinate system of $\mathbb{E}_{1}^{3}[13]$.
Let $\gamma: I \longrightarrow \mathbb{E}_{1}^{3}$ be a timelike space curve with a non-vanishing second derivative. The Frenet formula for the unit timelike curve $\gamma(t)$ is given

$$
\begin{aligned}
& \mathbf{T}^{\prime}=\kappa \mathbf{N}, \\
& \mathbf{N}^{\prime}=\kappa \mathbf{T}+\tau \mathbf{B}, \\
& \mathbf{B}^{\prime}=-\tau \mathbf{N},
\end{aligned}
$$

where κ, and τ are the curvature and the torsion functions of the curve γ which are defined as $\kappa=\left\|\mathbf{T}^{\prime}\right\|$ and $\tau=\left\langle N^{\prime}, B\right\rangle$, respectively [9].

The quasi-frame (abbv. q-frame) as an alternative frame to Frenet trihedron has been introduced as follows: Given a space curve $\gamma(t)$, the q -frame composes of three orthonormal vectors, these vectors are, respectively, the unit tangent vector \mathbf{T}, the quasi-normal \mathbf{N}_{q} and the quasi-binormal vector \mathbf{B}_{q}. The q-frame $\left\{\mathbf{T}, \mathbf{N}_{q}, \mathbf{B}_{q}, \mathbf{k}\right\}$ is given by

$$
\mathbf{T}=\frac{\gamma^{\prime}}{\left\|\gamma^{\prime}\right\|}, \mathbf{N}_{q}=\frac{\mathbf{T} \wedge_{L} \mathbf{k}}{\left\|\mathbf{T} \wedge_{L} \mathbf{k}\right\|}, \mathbf{B}_{q}=\mathbf{T} \wedge_{L} \mathbf{N}_{q},
$$

where \mathbf{k} is the projection vector. For clarity, the projection vector \mathbf{k} has been chosen as $\mathbf{k}=(0,0,1)$ along with the paper. Nevertheless, the q-frame is singular in all cases where \mathbf{t} and \mathbf{k} become parallel. Hence, in those cases where \mathbf{t} and \mathbf{k} are parallel the projection vector \mathbf{k} can be chosen as $\mathbf{k}=(0,1,0)$ or $\mathbf{k}=(1,0,0)$ [20].

Let $\gamma(s)$ be a timelike curve that is parameterized by arc-length s. The variation equations of the q-frame for a timelike curve when tangent vector (timelike), projection vector $\mathbf{k}=(0,1,0)$ (spacelike), quasi-normal vector (spacelike) and quasi-binormal vector (spacelike), are given ([20]) by

$$
\left[\begin{array}{c}
\mathbf{T}^{\prime} \\
\mathbf{N}_{q}^{\prime} \\
\mathbf{B}_{q}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1} & k_{2} \\
k_{1} & 0 & k_{3} \\
k_{2} & -k_{3} & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{T} \\
\mathbf{N}_{q} \\
\mathbf{B}_{q}
\end{array}\right]
$$

where the q-curvatures are

$$
k_{1}=\left\langle\mathbf{T}^{\prime}, \mathbf{N}_{q}\right\rangle_{L}, \quad k_{2}=\left\langle\mathbf{T}^{\prime}, \mathbf{B}_{q}\right\rangle_{L}, \quad k_{3}=\left\langle\mathbf{N}_{q}^{\prime}, \mathbf{B}_{q}\right\rangle_{L}
$$

3. The timelike q-helices

In this section, we study different types of q-helices which means k type slant helices of curves via quasi frame (abbv. q-frame) in LorentzMinkowski 3 -space \mathbb{E}_{1}^{3}. By q-helices, we intend the curves whose quasiframe vector fields' dot product with a non-zero fixed axis is constant. These types of helices within the q-frame are enclosed as depending on the inner product between the tangent vector field \mathbf{T} and the fixed vector field \mathbf{U}, the quasi-normal vector field \mathbf{N}_{q} and the fixed vector field \mathbf{U}, and the quasi-binormal vector field \mathbf{B}_{q} and the fixed vector field U become constant.

Definition 3.1. A timelike curve γ in \mathbb{E}_{1}^{3} given by the q-frame $\left\{\mathbf{T}, \mathbf{N}_{q}, \mathbf{B}_{q}\right\}$ is called a slant helix of type- 0 , a slant helix of type- 1 , and a slant helix of type-2 if there exists a non zero fixed direction $\mathbf{U} \in \mathbb{E}_{1}^{3}$ such that satisfies, respectively,

$$
\langle\mathbf{T}, \mathbf{U}\rangle_{L}=c_{0}, \quad\left\langle\mathbf{N}_{q}, \mathbf{U}\right\rangle_{L}=c_{1}, \quad \text { and }\left\langle\mathbf{B}_{q}, \mathbf{U}\right\rangle_{L}=c_{2}
$$

where c_{0}, c_{1}, and c_{2} are constants. The fixed direction \mathbf{U} is called axis of the q-helices.

The vector field \mathbf{U} can be written as a combination of q-frame fields as subsequent

$$
\mathbf{U}=\lambda_{1} \mathbf{T}+\lambda_{2} \mathbf{N}_{q}+\lambda_{3} \mathbf{B}_{q}
$$

where

$$
\lambda_{1}=-\langle\mathbf{T}, \mathbf{U}\rangle_{L} \quad \lambda_{2}=\left\langle\mathbf{N}_{q}, \mathbf{U}\right\rangle_{L} \quad \lambda_{3}=\left\langle\mathbf{B}_{q}, \mathbf{U}\right\rangle_{L} .
$$

Since \mathbf{U} is a fixed vector filed, its differentiation vanishes, thus the following system is obtained as

$$
\begin{align*}
& \lambda_{1}^{\prime}+\lambda_{2} k_{1}+\lambda_{3} k_{2}=0, \\
& \lambda_{2}^{\prime}+\lambda_{1} k_{1}-\lambda_{3} k_{3}=0, \tag{3.1}\\
& \lambda_{3}^{\prime}+\lambda_{1} k_{2}+\lambda_{2} k_{3}=0
\end{align*}
$$

In the following subsections, we study timelike q-helices based on the system (3.1).

3.1. The timelike q-helices of type-0

Theorem 3.1. Let γ be a timelike curve due to the q -frame in \mathbb{E}_{1}^{3}. Then γ is a timelike q-helix of type- 0 if and only if (3.2)

$$
\left(e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{1} e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} d s\right) k_{1}+\left(e^{\int \frac{k_{2} k_{3}}{k_{1}} d s} \int k_{2} e^{-\int \frac{k_{2} k_{3}}{k_{1}} d s} d s\right) k_{2}=0 .
$$

Proof. A timelike q-helix of type-0 satisfies the condition

$$
\lambda_{1}=-\langle\mathbf{T}, \mathbf{U}\rangle_{L}=c_{0}
$$

where c_{0} is constant. Therefore, by substituting $\lambda_{1}=c_{0}$ into the system (3.1), it turns into

$$
\begin{align*}
& \lambda_{2} k_{1}+\lambda_{3} k_{2}=0, \\
& \lambda_{2}^{\prime}-\lambda_{3} k_{3}-c_{0} k_{1}=0, \tag{3.3}\\
& \lambda_{3}^{\prime}+\lambda_{2} k_{3}-c_{0} k_{2}=0 .
\end{align*}
$$

From (3.3) ${ }_{1}$,

$$
\begin{equation*}
\lambda_{3}=-\frac{k_{1}}{k_{2}} \lambda_{2}, \quad \lambda_{2}=-\frac{k_{2}}{k_{1}} \lambda_{3} . \tag{3.4}
\end{equation*}
$$

By using (3.4) in the equations $(3.3)_{2}$, and (3.3) $)_{3}$, we get the following linear differential equations of first order:

$$
\begin{equation*}
\lambda_{2}^{\prime}+\frac{k_{1} k_{3}}{k_{2}} \lambda_{2}=c_{0} k_{1}, \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{3}^{\prime}-\frac{k_{2} k_{3}}{k_{1}} \lambda_{3}=c_{0} k_{2} . \tag{3.6}
\end{equation*}
$$

The solution of (3.5) is

$$
\begin{equation*}
\lambda_{2}=c_{0} e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{1} e^{\int \frac{k_{1} k_{3}}{k_{2} d s}} d s \tag{3.7}
\end{equation*}
$$

and the solution of (3.6) is

$$
\begin{equation*}
\lambda_{3}=c_{0} e^{\int \frac{k_{2} k_{3}}{k_{1}} d s} \int k_{2} e^{-\int \frac{k_{2} k_{3}}{k_{1}} d s} d s \tag{3.8}
\end{equation*}
$$

Substituting (3.7) and (3.8) into (3.3) $)_{1}$ gives the condition to be qhelices of type-0 as follows:

$$
\left(e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{1} e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} d s\right) k_{1}+\left(e^{\int \frac{k_{2} k_{3}}{k_{1}} d s} \int k_{2} e^{-\int \frac{k_{2} k_{3}}{k_{1}} d s} d s\right) k_{2}=0
$$

Conversely, suppose that the relation (3.2) holds, the fixed vector filed \mathbf{U} can also be composed of

$$
\begin{align*}
\mathbf{U}=-c_{0} \mathbf{T}+ & \left(c_{0} e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{1} e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} d s\right) \mathbf{N}_{q} \\
& +\left(c_{0} e^{\int \frac{k_{2} k_{3}}{k_{1}} d s} \int k_{2} e^{-\int \frac{k_{2} k_{3}}{k_{1}} d s} d s\right) \mathbf{B}_{q} \tag{3.9}
\end{align*}
$$

We obtain $\mathbf{U}^{\prime}=\mathbf{0}$ by using (3.2). Hence γ is a timelike q-helix of type-0.

Corollary 3.1. If γ is a timelike q-helix of type- 0 , an axis of γ is as

$$
\begin{aligned}
\mathbf{D}_{0}=-c_{0} \mathbf{T} & \left(c_{0} e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{1} e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} d s\right) \mathbf{N}_{q} \\
& +\left(c_{0} e^{\int \frac{k_{2} k_{3}}{k_{1}} d s} \int k_{2} e^{-\int \frac{k_{2} k_{3}}{k_{1}} d s} d s\right) \mathbf{B}_{q}
\end{aligned}
$$

Remark 3.1. If the tangent vector field \mathbf{T} of the curve γ and the fixed axis \mathbf{D}_{0} are orthogonal to each other, that is, $c_{0}=0$, then the timelike q-helix of type-0 can not occur since the vanishing of the axis D_{0}.

3.2. The timelike q-helices of type-1

Theorem 3.2. Let γ be a timelike curve due to the q-frame in \mathbb{E}_{1}^{3}. Then γ is a timelike q-helix of type- 1 if and only if

$$
\begin{equation*}
\left(e^{-\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{1} e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} d s\right) k_{1^{-}}\left(e^{-\int \frac{k_{2} k_{3}}{k_{1}} d s} \int k_{3} e^{\int \frac{k_{2} k_{3}}{k_{1}} d s} d s\right) k_{3}=0 \tag{3.10}
\end{equation*}
$$

Proof. A timelike q-helix of type-1 satisfies the condition

$$
\begin{equation*}
\lambda_{2}=\left\langle\mathbf{N}_{q}, \mathbf{U}\right\rangle=c_{1} \tag{3.11}
\end{equation*}
$$

where c_{1} is constant. Therefore, by substituting $\lambda_{2}=c_{1}$ into the system (3.1), it turns into

$$
\begin{align*}
& \lambda_{1}^{\prime}+c_{1} k_{1}+\lambda_{3} k_{2}=0, \\
& \lambda_{1} k_{1}-\lambda_{3} k_{3}=0, \tag{3.12}\\
& \lambda_{3}^{\prime}+\lambda_{1} k_{2}+c_{1} k_{3}=0 .
\end{align*}
$$

From (3.12) ${ }_{2}$,

$$
\begin{equation*}
\lambda_{3}=\frac{k_{1}}{k_{3}} \lambda_{1}, \quad \lambda_{1}=\frac{k_{3}}{k_{1}} \lambda_{3} . \tag{3.13}
\end{equation*}
$$

By using (3.13) in the equations (3.12) $)_{1}$, and (3.12) $)_{3}$, we get the following linear differential equations of first order:

$$
\begin{equation*}
\lambda_{1}^{\prime}+\frac{k_{1} k_{2}}{k_{3}} \lambda_{1}=-c_{1} k_{1}, \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{3}^{\prime}+\frac{k_{2} k_{3}}{k_{1}} \lambda_{3}=-c_{1} k_{3} . \tag{3.15}
\end{equation*}
$$

The solutions of (3.14), and (3.15) are obtained as

$$
\begin{equation*}
\lambda_{1}=-c_{1} e^{-\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{1} e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} d s \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{3}=-c_{1} e^{-\int \frac{k_{2} k_{3}}{k_{1}} d s} \int k_{3} e^{\int \frac{k_{2} k_{3}}{k_{1}} d s} d s \tag{3.17}
\end{equation*}
$$

respectively.
Substituting (3.16) and (3.17) into (3.12) $)_{2}$ gives the condition to be timelike q-helices of type-1 as follows:

$$
\left(e^{-\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{1} e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} d s\right) k_{1^{-}}\left(e^{-\int \frac{k_{2} k_{3}}{k_{1}} d s} \int k_{3} e^{\int \frac{k_{2} k_{3}}{k_{1}} d s} d s\right) k_{3}=0 .
$$

Conversely, suppose that the relation (3.10) holds, the fixed vector field \mathbf{U} can also be composed of

$$
\begin{align*}
\mathbf{U} & =\left(-c_{1} e^{-\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{1} e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} d s\right) \mathbf{T}+c_{1} \mathbf{N}_{q} \\
& -\left(c_{1} e^{-\int \frac{k_{2} k_{3}}{k_{1}} d s} \int k_{3} e^{\int \frac{k_{2} k_{3}}{k_{1}} d s} d s\right) \mathbf{B}_{q} . \tag{3.18}
\end{align*}
$$

We obtain $\mathbf{U}^{\prime}=\mathbf{0}$ by using (3.10) and (3.11). Hence γ is a timelike q-helix of type-1.

Corollary 3.2. If γ is a timelike q-helix of type- 1 , an axis of γ is as

$$
\begin{aligned}
\mathbf{D}_{1} & =\left(-c_{1} e^{-\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{1} e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} d s\right) \mathbf{T}+c_{1} \mathbf{N}_{q} \\
& -\left(c_{1} e^{-\int \frac{k_{2} k_{3}}{k_{1}} d s} \int k_{3} e^{\int \frac{k_{2} k_{3}}{k_{1}} d s} d s\right) \mathbf{B}_{q} .
\end{aligned}
$$

Remark 3.2. If the tangent vector field \mathbf{N}_{q} of the curve γ and the fixed axis \mathbf{D}_{1} are orthogonal to each other, that is, $c_{1}=0$, then the timelike q-helix of type-1 can not occur since the vanishing of the axis D_{1}.

3.3. The timelike q-helices of type- 2

Theorem 3.3. Let γ be a timelike curve due to the q -frame in \mathbb{E}_{1}^{3}. Then γ is a timelike q-helix of type- 2 if and only if (3.19)

$$
\left(e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{2} e^{-\int \frac{k_{1} k_{2}}{k_{3}} d s} d s\right) k_{2}-\left(e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{3} e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} d s\right) k_{3}=0 .
$$

Proof. A timelike q-helix of type-2 satisfies the condition

$$
\begin{equation*}
\lambda_{3}=\left\langle\mathbf{B}_{q}, \mathbf{U}\right\rangle=c_{2}, \tag{3.20}
\end{equation*}
$$

where c_{2} is constant. Therefore, by substituting $\lambda_{3}=c_{2}$ into the system (3.1), it turns into

$$
\begin{align*}
& \lambda_{1}^{\prime}+\lambda_{2} k_{1}+c_{2} k_{2}=0, \\
& \lambda_{2}^{\prime}+\lambda_{1} k_{1}-c_{2} k_{3}=0, \tag{3.21}\\
& \lambda_{1} k_{2}+\lambda_{2} k_{3}=0 .
\end{align*}
$$

From (3.21) ${ }_{3}$,

$$
\begin{equation*}
\lambda_{2}=-\frac{k_{2}}{k_{3}} \lambda_{1}, \quad \lambda_{1}=-\frac{k_{3}}{k_{2}} \lambda_{2} . \tag{3.22}
\end{equation*}
$$

By using (3.22) in the equations (3.21) $)_{1}$, and $(3.21)_{2}$, we get the following linear differential equations of first order:

$$
\begin{equation*}
\lambda_{1}^{\prime}-\frac{k_{1} k_{2}}{k_{3}} \lambda_{1}=-c_{2} k_{2}, \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{2}^{\prime}-\frac{k_{1} k_{3}}{k_{2}} \lambda_{2}=c_{2} k_{3} . \tag{3.24}
\end{equation*}
$$

The solutions of (3.23) and (3.24) are

$$
\begin{equation*}
\lambda_{1}=-c_{2} e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{2} e^{-\int \frac{k_{1} k_{2}}{k_{3}} d s} d s \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{2}=c_{2} e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{3} e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} d s \tag{3.26}
\end{equation*}
$$

respectively.
Substituting (3.25) and (3.26) into (3.21) ${ }_{1}$ gives the condition to be q-helices of type- 2 as follows:

$$
\left(e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{2} e^{-\int \frac{k_{1} k_{2}}{k_{3}} d s} d s\right) k_{2^{-}}\left(e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{3} e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} d s\right) k_{3}=0 .
$$

Conversely, suppose that the relation (3.19) holds, also the fixed vector filed \mathbf{U} can be composed of

$$
\begin{align*}
\mathbf{U} & =\left(-c_{2} e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{2} e^{-\int \frac{k_{1} k_{2}}{k_{3}} d s} d s\right) \mathbf{T} \tag{3.27}\\
& +\left(c_{2} e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{3} e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} d s\right) \mathbf{N}_{q}+c_{2} \mathbf{B}_{q} .
\end{align*}
$$

We obtain $\mathbf{U}^{\prime}=\mathbf{0}$ by using (3.19) and (3.20). Hence γ is a q-helix of type-2.

Corollary 3.3. If γ is a q-helix of type-2, an axis of γ is

$$
\begin{aligned}
\mathbf{D}_{2}= & \left(-c_{2} e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{2} e^{-\int \frac{k_{1} k_{2}}{k_{3}} d s} d s\right) \mathbf{T} \\
& +\left(c_{2} e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{3} e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} d s\right) \mathbf{N}_{q}+c_{2} \mathbf{B}_{q}
\end{aligned}
$$

Remark 3.3. If the tangent vector field \mathbf{B}_{q} of the curve γ and the fixed axis \mathbf{D}_{2} are orthogonal to each other, that is, $c_{2}=0$, then the timelike q-helix of type-2 can not occur since the vanishing of the axis D_{2}.

3.4. The relations of timelike q-helices to each other

In this part, we give the relations of timelike q-helices to each other based on the consequences of Theorem 3.1, 3.2, and 3.3.

Corollary 3.4. Let γ be a timelike q-helix of type- 0 in $\mathbf{U} \in \mathbb{E}_{1}^{3}$. Then γ is a timelike q-helix of type- 1 if and only if

$$
\begin{equation*}
k_{1}=0 \quad \text { or } \quad k_{2}=c_{a} k_{3}, \tag{3.28}
\end{equation*}
$$

where c_{a} is constant.
Proof. Using (3.9) at the condition to be a timelike q-helix of type-1 as follows:

$$
\begin{equation*}
\left\langle\mathbf{N}_{q}, \mathbf{U}\right\rangle_{L}=c_{0} e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{1} e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} d s \tag{3.29}
\end{equation*}
$$

The expression in (3.29) becomes constant if the cases (3.28) are satisfied.

Corollary 3.5. Let γ be a timelike q-helix of type- 0 in $\mathbf{U} \in \mathbb{E}_{1}^{3}$. Then γ is a timelike q-helix of type- 2 if and only if

$$
\begin{equation*}
k_{2}=0 \quad \text { or } \quad k_{1}=-c_{b} k_{3}, \tag{3.30}
\end{equation*}
$$

where c_{b} is constant.

Proof. Using (3.9) at the condition to be a timelike q-helix of type-2 as follows:

$$
\begin{equation*}
\left\langle\mathbf{B}_{q}, \mathbf{U}\right\rangle_{L}=-c_{0} e^{\int \frac{k_{2} k_{3}}{k_{1}} d s} \int k_{2} e^{-\int \frac{k_{2} k_{3}}{k_{1}} d s} d s \tag{3.31}
\end{equation*}
$$

The expression in (3.31) becomes constant if the cases (3.30) are satisfied.

Corollary 3.6. Let γ be a timelike q-helix of type-1 in $\mathbf{U} \in \mathbb{E}_{1}^{3}$. Then γ is a timelike q-helix of type- 0 if and only if

$$
\begin{equation*}
k_{1}=0 \quad \text { or } \quad k_{3}=c_{c} k_{2}, \tag{3.32}
\end{equation*}
$$

where c_{c} is constant.
Proof. Using (3.18) at the condition to be a timelike q-helix of type-0 as follows:

$$
\begin{equation*}
\langle\mathbf{T}, \mathbf{U}\rangle_{L}=c_{1} e^{-\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{1} e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} d s \tag{3.33}
\end{equation*}
$$

The expression in (3.33) becomes constant if the cases (3.32) are satisfied.

Corollary 3.7. Let γ be a timelike q-helix of type- 1 in $\mathbf{U} \in \mathbb{E}_{1}^{3}$. Then γ is a timelike q-helix of type-2 if and only if

$$
\begin{equation*}
k_{3}=0 \quad \text { or } \quad k_{1}=c_{d} k_{2}, \tag{3.34}
\end{equation*}
$$

where c_{d} is constant.
Proof. Using (3.18) at the condition to be a timelike q-helix of type-2 as follows:

$$
\begin{equation*}
\left\langle\mathbf{B}_{q}, \mathbf{U}\right\rangle_{L}=-c_{1} e^{-\int \frac{k_{2} k_{3}}{k_{1}} d s} \int k_{3} e^{\int \frac{k_{2} k_{3}}{k_{1}} d s} d s \tag{3.35}
\end{equation*}
$$

The expression in (3.35) becomes constant if the cases (3.34) are satisfied.

Corollary 3.8. Let γ be a timelike q-helix of type- 2 in $\mathbf{U} \in \mathbb{E}_{1}^{3}$. Then γ is a timelike q-helix of type- 0 if and only if

$$
\begin{equation*}
k_{2}=0 \quad \text { or } \quad k_{3}=-c_{e} k_{1}, \tag{3.36}
\end{equation*}
$$

where c_{e} is constant.
Proof. Using (3.27) at the condition to be a timelike q-helix of type-0 as follows:

$$
\begin{equation*}
\langle\mathbf{T}, \mathbf{U}\rangle_{L}=c_{2} e^{-\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{2} e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} d s \tag{3.37}
\end{equation*}
$$

The expression in (3.37) becomes constant if the cases (3.36) are satisfied.

Corollary 3.9. Let γ be a timelike q-helix of type- 2 in $\mathbf{U} \in \mathbb{E}_{1}^{3}$. Then γ is a timelike q-helix of type- 1 if and only if

$$
\begin{equation*}
k_{3}=0 \quad \text { or } \quad k_{2}=-c_{f} k_{1}, \tag{3.38}
\end{equation*}
$$

where c_{f} is constant.
Proof. Using (3.27) at the condition to be a timelike q-helix of type-1 as follows:

$$
\begin{equation*}
\left\langle\mathbf{N}_{q}, \mathbf{U}\right\rangle_{L}=c_{2} e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{1} e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} d s \tag{3.39}
\end{equation*}
$$

The expression in (3.39) becomes constant if the cases (3.38) are satisfied.

The above results can be put together with the following corollary:
Corollary 3.10. Let γ be a curve via q-frame in $\mathbf{U} \in \mathbb{E}_{1}^{3}$. Then
(i): The curve γ is both a timelike q-helix of type- 0 and a timelike q-helix of type-1 provided that

$$
k_{1}=0 \quad \text { or } \quad k_{2}=A k_{3},
$$

where A is an arbitrary constant.
(ii): The curve γ is both a timelike q-helix of type-0 and a timelike q-helix of type-2 provided that

$$
k_{2}=0 \quad \text { or } \quad k_{1}=B k_{3},
$$

where B is an arbitrary constant.
(iii): The curve γ is both a timelike q-helix of type- 1 and a timelike q-helix of type-2 provided that

$$
k_{3}=0 \quad \text { or } \quad k_{2}=C k_{1},
$$

where C is an arbitrary constant.

4. The Darboux q-helices

In this part of the study, we examine the Darboux q-helices of timelike curves. First we research the conditions of q-helices of type-0, type-1, and type- 2 to be a Darboux q-helix, respectively. Finally, we obtain the general case for timelike q-helices to be Darboux helices.

Using the relations

$$
\mathbf{T}^{\prime}=\partial \times \mathbf{T}, \quad \mathbf{N}_{q}^{\prime}=\partial \times \mathbf{N}_{q}, \quad \mathbf{B}_{q}^{\prime}=\partial \times \mathbf{B}_{q},
$$

The Darboux vector of a timelike curve due to the q -frame is calculated as

$$
\begin{equation*}
\partial=-k_{3} \mathbf{T}+k_{2} \mathbf{N}_{q}-k_{1} \mathbf{B}_{q} . \tag{4.1}
\end{equation*}
$$

We have to give the description of Darboux q-helices as follows:
Definition 4.1. A unit speed timelike curve γ via q-frame whose Darboux vector ∂ is as given in (4.1), is said to be a Darboux helix provided that there exists a non-zero fixed direction $\mathbf{U} \in \mathbb{E}_{1}^{3}$ such that satisfies

$$
\begin{equation*}
\langle\partial, \mathbf{U}\rangle_{L}=c \tag{4.2}
\end{equation*}
$$

where c is constant.
Based upon the system (3.1), we take the timelike q-helices of type0 , type-1, and type-2, and a timelike curve framed by q-frame to be Darboux helices into consideration, respectively, in the subsequent four cases:

Case-1: Let γ be a timelike q-helix of type-0. Hence the equation (3.2) holds. The equation

$$
\begin{equation*}
\left\langle\partial^{\prime}, \mathbf{U}\right\rangle_{L}=\lambda_{1} k_{3}^{\prime}+\lambda_{2} k_{2}^{\prime}-\lambda_{3} k_{1}^{\prime}=0 \tag{4.3}
\end{equation*}
$$

Using (3.5), and (4.3) in the system (3.1) results

$$
\begin{align*}
& c_{0} k_{3}^{\prime}+\lambda_{2} k_{2}^{\prime}-\lambda_{3} k_{1}^{\prime}=0 \\
& \lambda_{2} k_{1}+\lambda_{3} k_{2}=0 \\
& \lambda_{2}^{\prime}+-c_{0} k_{1}-\lambda_{3} k_{3}=0 \tag{4.4}\\
& \lambda_{3}^{\prime}+-c_{0} k_{2}+\lambda_{2} k_{3}=0
\end{align*}
$$

Applying $(4.4)_{2}$ into the equations $(4.4)_{3}$, and $(4.4)_{4}$, the functions λ_{2}, and λ_{3} are found as in (3.7), and (3.8). If the values obtained are substituted into the equation $(4.4)_{1}$, then it follows that

$$
\begin{equation*}
k_{3}^{\prime}+k_{2}^{\prime} e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{1} e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} d s-k_{1}^{\prime} e^{\int \frac{k_{2} k_{3}}{k_{1}} d s} \int k_{2} e^{-\int \frac{k_{2} k_{3}}{k_{1}} d s} d s=0 \tag{4.5}
\end{equation*}
$$

Also from (3.9), we have

$$
\begin{equation*}
\left(e^{\int \frac{k_{2} k_{3}}{k_{1}} d s} \int k_{2} e^{-\int \frac{k_{2} k_{3}}{k_{1}} d s} d s\right)=-\frac{k_{1}}{k_{2}}\left(e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{1} e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} d s\right) \tag{4.6}
\end{equation*}
$$

Substituting (4.6) into (4.5) gives

$$
\begin{equation*}
k_{3}^{\prime}+\left(k_{2}^{\prime}+\frac{k_{1} k_{1}^{\prime}}{k_{2}}\right)\left(e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{1} e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} d s\right)=0 \tag{4.7}
\end{equation*}
$$

which is the condition for a timelike q-helix of type-0 to be a Darboux helix.

Conversely, suppose that the relation (4.7) holds, it can be seen that the axis given in (3.9) is a fixed one.

Case-2: Let γ be a timelike q-helix of type-1. Hence the equation (3.11) holds. Using (3.11), and (4.3) in the system (3.1), we find the system

$$
\begin{align*}
& \lambda_{1} k_{3}^{\prime}+c_{1} k_{2}^{\prime}-\lambda_{3} k_{1}^{\prime}=0, \\
& \lambda_{1}^{\prime}+c_{1} k_{1}+\lambda_{3} k_{2}=0, \\
& \lambda_{1} k_{1}-\lambda_{3} k_{3}=0, \tag{4.8}\\
& \lambda_{3}^{\prime}+\lambda_{1} k_{2}+c_{1} k_{3}=0 .
\end{align*}
$$

Applying $(4.8)_{2}$ into the equations $(4.8)_{1}$, and $(4.8)_{3}$, the functions λ_{1}, and λ_{3} are found as in (3.16), and (3.17). If the values obtained are substituted into the equation $(4.8)_{1}$, then it follows that

$$
\begin{equation*}
-k_{3}^{\prime} e^{-\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{1} e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} d s+k_{2}^{\prime}+k_{1}^{\prime} e^{-\int \frac{k_{2} k_{3}}{k_{1}} d s} \int k_{3} e^{\int \frac{k_{2} k_{3}}{k_{1}} d s} d s=0 . \tag{4.9}
\end{equation*}
$$

Also from (3.23), we obtain

$$
\begin{equation*}
\left(e^{-\int \frac{k_{2} k_{3}}{k_{1}} d s} \int k_{3} e^{\int \frac{k_{2} k_{3}}{k_{1}} d s} d s\right)=\frac{k_{1}}{k_{3}}\left(e^{-\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{1} e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} d s\right) . \tag{4.10}
\end{equation*}
$$

Substituting (4.10) into (4.9), we attain the equation

$$
\begin{equation*}
k_{2}^{\prime}+\left(\frac{k_{1} k_{1}^{\prime}}{k_{3}}-k_{3}^{\prime}\right)\left(e^{-\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{1} e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} d s\right)=0 \tag{4.11}
\end{equation*}
$$

which is the condition for a q-helix of type-1 to be a Darboux helix.
Conversely, suppose that the relation (4.11) holds, it can be seen that the axis given in (3.18) is a fixed one.

Case-3: Let γ be a timelike q-helix of type-2. So the equation (3.20) holds. Using (3.20), and (4.3) in the system (3.1), we find the system

$$
\begin{align*}
& \lambda_{1} k_{3}^{\prime}+\lambda_{2} k_{2}^{\prime}-c_{2} k_{1}^{\prime}=0, \\
& \lambda_{1}^{\prime}+\lambda_{2} k_{1}+c_{2} k_{2}=0, \tag{4.12}\\
& \lambda_{2}^{\prime}+\lambda_{1} k_{1}-c_{2} k_{3}=0, \\
& \lambda_{1} k_{2}+\lambda_{2} k_{3}=0 .
\end{align*}
$$

Applying (4.12) $)_{3}$ into the equations (4.12) ${ }_{1}$, and (4.12) $)_{2}$, the functions λ_{1}, and λ_{2} are obtained as in (3.25), and (3.26). If the values obtained is put into the equation $(4.12)_{1}$, then it follows that

$$
\begin{equation*}
-k_{3}^{\prime} e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{2} e^{-\int \frac{k_{1} k_{2} d s}{k_{3}} d s} d s+k_{2}^{\prime} e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{3} e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} d s-k_{1}^{\prime}=0 . \tag{4.13}
\end{equation*}
$$

Also from (3.34), we obtain

$$
\begin{equation*}
\left(e^{\int \frac{k_{1} k_{2}}{k_{3}} d s} \int k_{2} e^{-\int \frac{k_{1} k_{2}}{k_{3}} d s} d s\right)=\frac{k_{3}}{k_{2}}\left(e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{3} e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} d s\right) \tag{4.14}
\end{equation*}
$$

Put (4.14) into (4.13), we reach the result

$$
\begin{equation*}
k_{1}^{\prime}+\left(\frac{k_{3} k_{3}^{\prime}}{k_{2}}-k_{2}^{\prime}\right)\left(e^{\int \frac{k_{1} k_{3}}{k_{2}} d s} \int k_{3} e^{-\int \frac{k_{1} k_{3}}{k_{2}} d s} d s\right)=0 \tag{4.15}
\end{equation*}
$$

which is the condition for a timelike q-helix of type-2 to be a Darboux helix.

Conversely, suppose that the relation (4.16) holds, it can be seen that the axis given in (3.27) is a fixed one.

Case 4 (General Case):
Let γ be a timelike curve due to the q-frame in \mathbb{E}_{1}^{3}. From (4.2), we obtain

$$
\begin{equation*}
\lambda_{1} k_{3}+\lambda_{2} k_{2}-\lambda_{3} k_{1}=c \tag{4.16}
\end{equation*}
$$

Differentiating (4.16) gives

$$
\begin{equation*}
\lambda_{1} k_{3}^{\prime}+\lambda_{2} k_{2}^{\prime}-\lambda_{3} k_{1}^{\prime}=0 \tag{4.17}
\end{equation*}
$$

By (4.16) and (4.17), we arrive

$$
\begin{equation*}
\lambda_{3}=\frac{\left(k_{2} k_{3}^{\prime}-k_{2}^{\prime} k_{3}\right) \lambda_{2}-c k_{3}^{\prime}}{k_{1} k_{3}^{\prime}-k_{1}^{\prime} k_{3}} \tag{4.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{1}=\frac{\left(k_{2} k_{1}^{\prime}-k_{2}^{\prime} k_{1}\right) \lambda_{2}-c k_{1}^{\prime}}{k_{3}^{\prime} k_{1}-k_{3} k_{1}^{\prime}} \tag{4.19}
\end{equation*}
$$

respectively. Substituting (4.18) and (4.19) into (3.1) 2 delivers the linear differential equation

$$
\begin{equation*}
\lambda_{2}^{\prime}+\left(\frac{-k_{2}^{\prime} k_{1}^{2}+k_{2} k_{1} k_{1}^{\prime}-k_{2}^{\prime} k_{3}^{2}-k_{2} k_{3} k_{3}^{\prime}}{k_{3}^{\prime} k_{1}-k_{3} k_{1}^{\prime}}\right) \lambda_{2}=c \frac{k_{1} k_{1}^{\prime}-k_{3} k_{3}^{\prime}}{k_{3}^{\prime} k_{1}-k_{3} k_{1}^{\prime}} \tag{4.20}
\end{equation*}
$$

The solution of (4.20) is

$$
\begin{equation*}
\lambda_{2}=c e^{\int \frac{-k_{2} k_{1} k_{1}^{\prime}+k_{2} k_{3} k_{3}^{\prime}+k_{1}^{\prime} k_{1}^{2}+k_{2}^{\prime} k_{3}^{2}}{k_{3}^{\prime} k_{1}-k_{3} k_{1}^{\prime}} d s} \int \frac{\left(k_{1} k_{1}^{\prime}-k_{3} k_{3}^{\prime}\right)}{k_{3}^{\prime} k_{1}-k_{3} k_{1}^{\prime}} e^{\int \frac{-k_{2}^{\prime} k_{1}^{2}+k_{2} k_{1} k_{1}^{\prime}-k_{2}^{\prime} k_{3}^{2}-k_{2} k_{3} k_{3}^{\prime}}{k_{3}^{\prime} k_{1}-k_{3} k_{1}^{\prime}} d s} d s \tag{4.21}
\end{equation*}
$$

Using (4.16) and (4.17), we obtain

$$
\begin{equation*}
\lambda_{1}=\frac{\left(k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}\right) \lambda_{3}-c k_{2}^{\prime}}{k_{2} k_{3}^{\prime}-k_{2}^{\prime} k_{3}}, \tag{4.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{2}=\frac{\left(k_{1}^{\prime} k_{3}-k_{1} k_{3}^{\prime}\right) \lambda_{3}-c k_{3}^{\prime}}{k_{2}^{\prime} k_{3}-k_{2} k_{3}^{\prime}}, \tag{4.23}
\end{equation*}
$$

respectively. Replacing (4.22) and (4.23) into $(3.1)_{3}$, we have the following differential equation

$$
\begin{equation*}
\lambda_{3}^{\prime}+\left(\frac{k_{1}^{\prime} k_{2}^{2}-k_{1} k_{2} k_{2}^{\prime}-k_{1}^{\prime} k_{3}^{2}+k_{1} k_{3} k_{3}^{\prime}}{k_{2} k_{3}^{\prime}-k_{2}^{\prime} k_{3}}\right) \lambda_{3}=c \frac{k_{2} k_{2}^{\prime}+k_{3} k_{3}^{\prime}}{k_{2} k_{3}^{\prime}-k_{2}^{\prime} k_{3}} . \tag{4.24}
\end{equation*}
$$

The solution of (4.24) is

$$
\begin{equation*}
\lambda_{3}=c e^{\int \frac{k_{1} k_{2} k_{2}^{\prime}-k_{1} k_{3} k_{3}^{\prime}+k_{1}^{\prime} k_{3}^{2}-k_{1}^{\prime} k_{2}^{2}}{k_{2} k_{3}^{\prime}-k_{2}^{\prime} k_{3}} d s} \int \frac{k_{2} k_{2}^{\prime}-k_{3} k_{3}^{\prime}}{k_{2} k_{3}^{\prime}-k_{2}^{\prime} k_{3}} e^{\int \frac{k_{1}^{\prime} k_{2}^{2}-k_{1} k_{2} k_{2}^{\prime}-k_{1}^{\prime} k_{3}^{2}+k_{1} k_{3} k_{3}^{\prime}}{k_{2} k_{3}^{\prime}-k_{2}^{\prime} k_{3}} d s} d s \tag{4.25}
\end{equation*}
$$

From (4.16) and (4.17), we attain

$$
\begin{equation*}
\lambda_{2}=\frac{\left(k_{3} k_{1}^{\prime}-k_{3}^{\prime} k_{1}\right) \lambda_{1}-c k_{1}^{\prime}}{k_{2}^{\prime} k_{1}-k_{2} k_{1}^{\prime}} \tag{4.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{3}=\frac{\left(k_{2}^{\prime} k_{3}-k_{2} k_{3}^{\prime}\right) \lambda_{1}-c k_{2}^{\prime}}{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}} \tag{4.27}
\end{equation*}
$$

respectively. Usage of the equations (4.26), and (4.27) at (3.1) ${ }_{1}$ allows the equation

$$
\begin{equation*}
\lambda_{1}^{\prime}+\left(\frac{k_{3} k_{1}^{\prime}-k_{3}^{\prime} k_{1}+k_{2}^{\prime} k_{3}-k_{2} k_{3}^{\prime}}{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}}\right) \lambda_{1}=c \frac{k_{1} k_{1}^{\prime}+k_{2} k_{2}^{\prime}}{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}} . \tag{4.28}
\end{equation*}
$$

The solution of (4.28) is

$$
\begin{equation*}
\lambda_{1}=c e^{\int \frac{k_{3}^{\prime} k_{1}^{2}-k_{1} k_{1}^{\prime} k_{3}-k_{2} k_{2}^{\prime} k_{3}+k_{2}^{2} k_{3}^{\prime}}{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}} d s} \int \frac{k_{1} k_{1}^{\prime}+k_{2} k_{2}^{\prime}}{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}} e^{\int \frac{k_{1} k_{1}^{\prime} k_{3}-k_{3}^{\prime} k_{1}^{2}+k_{2} k_{2}^{\prime} k_{3}-k_{2}^{2} k_{3}^{\prime}}{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}} d s} d s \tag{4.29}
\end{equation*}
$$

Substituting (4.21), (4.25), and (4.29) into (4.17) gives the condition for a curve to be a Darboux q-helix as follows:

$$
\begin{align*}
& \left(e^{\int \frac{k_{3}^{\prime} k_{1}^{2}-k_{1} k_{1}^{\prime} k_{3}-k_{2} k_{2}^{\prime} k_{3}+k_{2}^{2} k_{3}^{\prime}}{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}} d s} \int \frac{k_{1} k_{1}^{\prime}+k_{2} k_{2}^{\prime}}{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}} e^{\int \frac{k_{1} k_{1}^{\prime} k_{3}-k_{3}^{\prime} k_{1}^{2}+k_{2} k_{2}^{\prime} k_{3}-k_{2}^{2} k_{3}^{\prime}}{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}} d s} d s\right) k_{3}^{\prime} \tag{4.30}\\
+ & \left(e^{\int \frac{-k_{2} k_{1} k_{1}^{\prime}+k_{2} k_{3} k_{3}^{\prime}+k_{2}^{\prime} k_{1}^{2}+k_{2}^{\prime} k_{3}^{2}}{k_{3}^{\prime} k_{1}-k_{3} k_{1}^{\prime}} d s} \int \frac{\left(k_{1} k_{1}^{\prime}-k_{3} k_{3}^{\prime}\right)}{k_{3}^{\prime} k_{1}-k_{3} k_{1}^{\prime}} e^{\int \frac{-k_{2}^{\prime} k_{1}^{2}+k_{2} k_{1} k_{1}^{\prime}-k_{2}^{\prime} k_{3}^{2}-k_{2} k_{3} k_{3}^{\prime}}{k_{3}^{\prime} k_{1}-k_{3} k_{1}^{\prime}} d s} d s\right) k_{2}^{\prime} \\
= & \left(e^{\int \frac{k_{1} k_{2} k_{2}^{\prime}-k_{1} k_{3} k_{3}^{\prime}+k_{1}^{\prime} k_{3}^{2}-k_{1}^{\prime} k_{2}^{2}}{k_{2} k_{3}^{\prime}-k_{2}^{\prime} k_{3}} d s} \int \frac{k_{2} k_{2}^{\prime}-k_{3} k_{3}^{\prime}}{k_{2} k_{3}^{\prime}-k_{2}^{\prime} e_{3}} e^{\frac{k_{1}^{\prime} k_{2}^{2}-k_{1} k_{2} k_{2}^{\prime}-k_{1}^{\prime} k_{3}^{2}+k_{1} k_{3} k_{3}^{\prime}}{k_{2} k_{3}^{\prime}-k_{2}^{\prime} k_{3}}} d s\right) k_{1}^{\prime}=0 .
\end{align*}
$$

Conversely, suppose that the relation (4.30) holds, also the fixed vector filed \mathbf{U} can be composed of

$$
\begin{align*}
& \mathbf{U}=\left(c e^{\int \frac{k_{3}^{\prime} k_{1}^{2}-k_{1} k_{1}^{\prime} k_{3}-k_{2} k_{2}^{\prime} k_{3}+k_{2}^{2} k_{3}^{\prime}}{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}} d s} \int \frac{k_{1} k_{1}^{\prime}+k_{2} k_{2}^{\prime}}{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}} e^{\int \frac{k_{1} k_{1}^{\prime} k_{3}-k_{3}^{\prime} k_{1}^{2}+k_{2} k_{2}^{\prime} k_{3}-k_{2}^{2} k_{3}^{\prime}}{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}} d s} d s\right) \mathbf{T} \tag{4.31}\\
& +\left(c e^{\int \frac{-k_{2} k_{1} k_{1}^{\prime}+k_{2} k_{3} k_{3}^{\prime}+k_{2}^{\prime} k_{1}^{2}+k_{2}^{\prime} k_{3}^{2}}{k_{3}^{\prime} k_{1}-k_{3} k_{1}^{\prime}} d s} \int \frac{\left(k_{1} k_{1}^{\prime}-k_{3} k_{3}^{\prime}\right)}{k_{3}^{\prime} k_{1}-k_{3} k_{1}^{\prime}} e^{\int \frac{-k_{2}^{\prime} k_{1}^{2}+k_{2} k_{1} k_{1}^{\prime}-k_{2}^{\prime} k_{3}^{2}-k_{2} k_{3} k_{3}^{\prime}}{k_{3}^{\prime} k_{1}-k_{3} k_{1}^{\prime}} d s} d s\right) \mathbf{N}_{q} \\
& +\left(c e^{\int \frac{k_{1} k_{2} k_{2}^{\prime}-k_{1} k_{3} k_{3}^{\prime}+k_{1}^{\prime} k_{3}^{2}-k_{1}^{\prime} k_{2}^{2}}{k_{2} k_{3}^{\prime}-k_{2}^{\prime} k_{3}} d s} \int \frac{k_{2} k_{2}^{\prime}-k_{3} k_{3}^{\prime}}{k_{2} k_{3}^{\prime}-k_{2}^{\prime} k_{3}} e^{\int \frac{k_{1}^{\prime} k_{2}^{2}-k_{1} k_{2} k_{2}^{\prime}-k_{1}^{\prime} k_{3}^{2}+k_{1} k_{3} k_{3}^{\prime}}{k_{2} k_{3}^{\prime}-k_{2}^{\prime} k_{3}} d s} d s\right) \mathbf{B}_{q}
\end{align*}
$$

We obtain $\mathbf{U}^{\prime}=\mathbf{0}$ by using (4.16) and (4.30). Hence γ is a Darboux q-helix.

We can give the following theorem containing the cases above as:
Theorem 4.1. Let γ be a timelike curve due to the q-frame in Lorentz-Minkowski 3 -space \mathbb{E}_{1}^{3}. Then
(i) The timelike curve γ is a Darboux q-helix satisfying the condition to be q-helix of type-0 if and only if the equation (4.7) is satisfied,
(ii) The timelike curve γ is a Darboux q-helix satisfying the condition to be q-helix of type-1 if and only if the equation (4.11) is satisfied,
(iii) The timelike curve γ is a Darboux q-helix satisfying the condition to be q-helix of type-2 if and only if the equation (4.15) is satisfied,
(iv) The timelike curve γ is a Darboux q-helix if and only if the equation (4.31) is satisfied, and the fixed axis is given as in (4.31).

5. Conclusion

In the present study, we analyzed timelike q-helices from the point of view of frame fields which describe the behaviour of the curves. The original aspect of our research is to deal quasi-frame (abbv. q-frame) in Lorentz-Minkowski 3-space. For all vector fields of the mentioned frame, timelike slant helices, which are recalled, in the context of the paper, as q-helices, have been worked out in Lorentz-Minkowski 3-space. Additionally, the Darboux q-helices are obtained by Darboux vector which has been formed by q-frame fields.

6. Acknowledgement

The authors express thanks to the referees who contribute their valuable suggestions to the manuscript.

References

[1] A. Ali, R. Lopez, and M. Turgut, k-type partially null and pseudo null slant helices in Minkowski 4-space, Math. Commun. 17 (2012), 93-103.
[2] R. L. Bishop, There is more than one way to frame a curve, Amer. Math. Month. 82 (1975), 246-251.
[3] S. Coquillart, Computing offsets of B-spline curves, Computer-Aided Design 19 (1987), no. 6, 305-309.
[4] M. Dede, C. Ekici, and A. Görgülü, Directional q-frame along a space curve, IJARCSSE 5 (2015), no. 12, 775-780.
[5] M. Ergüt, H. B. Öztekin, and S. Aykurt, Non-null $k-$ slant helices and their spherical indicatrices in Minkowski 3-space, J. Adv. Res. Dyn. Control Syst. 2 (2010), 1-12.
[6] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk J. Math. 28 (2004), no. 2, 531-537.
[7] L. Kula and Y. Yayl, On slant helix and its spherical indicatrix, Appl. Math. Comput. 169 (2005), 600-607.
[8] L. Kula, N. Ekmekçi, Y. Yaylı, and K. İlarslan, Characterizations of slant helices in Euclidean 3-space, Turkish J. Math. 34 (2010), 261-273.
[9] R. López, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom. 7 (2014), 44-107.
[10] E. Nešović, U. Öztürk, and E. B. Koç Öztürk, On k-type pseudo null Darboux helices in Minkowski 3-space, J. Math. Anal. Appl. 439 (2016), no. 2, 690-700.
[11] E. Nešović, E. B. Koç Öztürk, and U. Öztürk, On k-type null Cartan slant helices in Minkowski 3-space, Math. Methods Appl. Sci. 41 (2018), no. 17, 75837598.
[12] E. Nešović, U. Öztürk, and E. B. Koç Öztürk, On T-Slant, N-Slant and BSlant helices in Galilean space G_{3}, Journal of Dynamical Systems and Geometric Theories 16 (2018), no. 2, 187-199.
[13] B. O'Neill, Semi-Riemannian Geometry with applications to relativity, Pure and Applied Mathematics 103, Academic Press Inc. New York, 1983.
[14] U. Öztürk and E. Nešović, On pseudo null and null Cartan Darboux helices in Minkowski 3-space, Kuwait J. Sci. 43 (2016), no. 2, 64-82.
[15] U. Öztürk and Z. B. Alkan. Darboux helices in three dimensional Lie groups, AIMS Mathematics 5 (2020), no. 4, 3169-3181.
[16] J. Quian and Y. H. Kim, Null helix and k-type null slant helices in E_{1}^{4}, Rev. Un. Mat. Argentina 57 (2016), 71-83.
[17] H. Shin, S. K. Yoo, S. K. Cho, and W. H. Chung, Directional offset of a spatial curve for practical engineering design, ICCSA 3 (2003), 711-720.
[18] M. Turgut and S. Yılmaz, Characterizations of some special helices in E^{4}, Sci. Magna 4 (2008), 51-55.
[19] G. Uğur Kaymanlı, C. Ekici, and M. Dede, Directional evolution of the ruled surfaces via the evolution of their directrix using q-frame along a timelike space curve, EJOSAT 20 (2020), 392-396.
[20] G. Uğur Kaymanlı, M. Dede, and C. Ekici, Directional spherical indicatrices of timelike space curve, Int. J. Geom. Methods Mod. Phys. 17 (2020), no. 11, 2030004.
[21] Y. Ünlütürk and T. Körpınar, On Darboux helices in Complex space C^{3}, Journal of Science and Arts 4 (2019), no. 49, 851-858.
[22] S. Yılmaz and M. Turgut, A new version of Bishop frame and an application to spherical images, J. Math. Anal. Appl. 371 (2010), 764-776.

Yasin Ünlütürk
Department of Mathematics, Kırklareli University,
Kırklareli 39100, Turkey.
E-mail: yasinunluturk@klu.edu.tr
Cumali Ekici
Department of Mathematics and Computer Sciences, Eskişehir Osmangazi University,
Eskisehir 26480, Turkey.
E-mail: cekici@ogu.edu.tr
Doğan Ünal
Department of Software Engineering, Kırklareli University, Kırklareli 39100, Turkey.
E-mail: doganunal@klu.edu.tr

