
Honam Mathematical J. 45 (2023), No. 2, pp. 300–315

https://doi.org/10.5831/HMJ.2023.45.2.300

ON THE BIHARMONICITY OF VECTOR FIELDS ON

PSEUDO-RIEMANNIAN MANIFOLDS

Amina Alem, Bouazza Kacimi, and Mustafa Özkan∗

Abstract. In this article, we deal with the biharmonicity of a vector

field X viewed as a map from a pseudo-Riemannian manifold (M, g) into

its tangent bundle TM endowed with the Sasaki metric gS . Precisely, we
characterize those vector fields which are biharmonic maps, and find the

relationship between them and biharmonic vector fields. Afterwards, we

study the biharmonicity of left-invariant vector fields on the three dimen-
sional Heisenberg group endowed with a left-invariant Lorentzian metric.

Finally, we give examples of vector fields which are proper biharmonic
maps on the Gödel universe.

1. Introduction

Let (M, g) and (N,h) be smooth pseudo-Riemannian manifolds of dimen-
sions m and n respectively, and let φ : (M, g) → (N,h) be a smooth map
between them. The energy functional or the Dirichlet energy of φ over a com-
pact domain D of M is defined by

(1) E(φ,D) =
1

2

∫
D

m∑
i=1

εih(dφ(ei), dφ(ei))vg,

where {ei}mi=1 a local pseudo-orthonormal frame field of (M, g) with εi =
g(ei, ei) = ±1 for all indices i = 1, 2, · · · ,m. If M is compact, we write
E(φ) = E(φ,M). The map φ is called harmonic if it is a critical point of
the energy functional (1). The Euler-Lagrange equation of (1) is [2, 8]

τ(φ) = Trg(∇dφ) =

m∑
i=1

εi{∇φ
eidφ(ei)− dφ(∇eiei)} = 0.

Here τ(φ) is the tension field of φ and ∇φ denotes the connection on the vector
bundle φ−1TN → M induced from the Levi-Civita connection ∇N of (N,h)
and ∇ the Levi-Civita connection of (M, g).
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Now, denote by X(M) the set of all smooth vector fields on M and by gS the
Sasaki metric on the tangent bundle TM . AnyX ∈ X(M) determines a smooth
map from (M, g) to (TM, gS). The energy of X is, by definition, the energy of
the corresponding map. When M is compact and g is positive definite, it was
proved in [11, 16] that X : (M, g) → (TM, gS) is an harmonic map if and only
if X is parallel, moreover this results remain true if X is a harmonic vector field
i.e. X is a critical point of the energy functional E restricted to the set X(M)
see [9]. In contrast to the Riemannian case, it was shown in [3] the existence
of non-parallel left-invariant vector fields which define harmonic maps on three
dimensional unimodular and non-unimodular Lorentzian Lie groups.

One of the first generalizations of harmonic maps is the notion of polyhar-
monic maps of order k between Riemannian manifolds introduced by Eells and
Lemaire in [7]. For k = 2, they defined the bienergy of φ as the functional

E2(φ) =
1

2

∫
D

∥τ(φ)∥2 vg,

and a smooth map φ is biharmonic if and only if it is a critical point of E2. The
associated Euler-Lagrange equation is established in [12]. By definition, it can
be seen that every harmonic map is biharmonic. However, a biharmonic map
can be non-harmonic in which case it is called proper biharmonic. We refer to
[17, 19] for more information on results concerning the theory of biharmonic
maps. The notion of biharmonic map between Riemannian manifolds has been
extended to the case of pseudo-Riemannian manifolds. The corresponding crit-
ical point condition has been derived in [5] as follows

τ2(φ) =

m∑
i=1

εi

((
∇φ

ei∇
φ
ei −∇φ

∇M
ei

ei

)
τ(φ)−RN (dφ(ei), τ(φ))dφ(ei)

)
= 0,

where τ2(φ) is the bitension field of φ and RN is the curvature tensor of N .
On the other hand, when (M, g) is the pseudo-Riemannian manifold, Markel-

los and Urakawa [15] defined the bienergy of X ∈ X(M) as the bienergy of the
corresponding map (see [14] for the Riemannian case) and obtained the critical
point of the bienergy functional E2 restricted to the set X(M) (equivalently,
X is a biharmonic vector field, see [14] for the Riemannian case), further in
[14] they proved that if g is positive definite and M is compact then X is bi-
harmonic vector field (resp. biharmonic map) if and only if X is parallel. In
[1], when g is positive definite we established the formula of the bitension field
of X : (M, g) → (TM, gS) and obtained characterization theorem for a vector
field to be biharmonic map, furthermore we constructed an example of non-
parallel vector field which is biharmonic map on the solvable Lie group Sol3
and we have shown that a left-invariant vector field X on three dimensional
unimodular Lie group is biharmonic vector field (resp. biharmonic map) if and
only if X is parallel.

Let (M, g) be a pseudo-Riemannian manifold. In this note, we will study
the biharmonicity of X ∈ X(M) viewed as a map X : (M, g) → (TM, gS) in
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pseudo-Riemannian settings. More precisely, we address the problem of char-
acterizing those vector fields which are biharmonic maps, and we examine the
relationship between vector fields X that are critical points of the functional E2

restricted to variations through vector fields (equivalently, X are biharmonic
vector fields, see [15]) and vector fields which are biharmonic maps. This paper
is organized as follows. In Section 2, we collect some basic facts that will be
needed later. In section 3, we compute the formula of the bitension field of
X : (M, g) → (TM, gS) (see Theorem 3.1) and we characterize those vector
fields which are biharmonic maps (see Theorem 3.2). On making use of the
formula of the bitension field of X, we give a simple proof of the first varia-
tional formula associated to the bienergy functional E2 restricted to the space
X(M) (see Theorem 3.4). As a corollary, we obtain the critical point condi-
tion characterizes biharmonic vector fields (see Corollary 3.5), consequently we
get the relationship between biharmonic vector fields and vector fields which
are biharmonic maps (see Corollary 3.7). In section 4, we entirely determine
the set of left-invariant vector fields which are biharmonic (resp. biharmonic
maps) on the three dimensional Heisenberg group endowed with a left-invariant
Lorentzian metric. Finally, in section 5, we give examples of vector fields which
are proper biharmonic maps on the Gödel universe.

2. Preliminaries

We recall here some basic facts on the geometry of tangent bundle. We
refer the reader to [4, 13, 20] and references therein for further details. Let
(M, g) be an m-dimensional pseudo-Riemannian manifold and (TM, π,M) be
its tangent bundle, ∇ denotes the associated Levi-Civita connection and R the
corresponding Riemannian curvature tensor taken with the sign convention

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

for all vector fields X, Y and Z on M . A local chart (U, xi)1≤i≤m on M induces
a local chart (π−1(U), xi, yi)1≤i≤m on TM , denotes the Christoffel symbols of
g by Γi

jk. The tangent space T(x,u)TM at a point (x, u) in TM is a direct sum

of the vertical subspace V(x,u) = ker(dπ |(x,u)) and the horizontal subspace
H(x,u), with respect to the Levi-Civita connection ∇ of M :

T(x,u)TM = H(x,u) ⊕ V(x,u).

Let X|U = Xi ∂
∂xi be a local vector field on M . The vertical and the horizontal

lifts of X are defined respectively by:

Xv|π−1(U) = (Xi ◦ π) ∂

∂yi
,

and

Xh|π−1(U) = (Xi ◦ π) ∂

∂xi
− (Γi

jk ◦ π)(Xj ◦ π)yk ∂

∂yi
.
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The Sasaki metric on TM is the pseudo-Riemannian metric gS defined by

gS(X
h, Y h) = gS(X

v, Y v) = g(X,Y ) ◦ π, gS(Xv, Y h) = 0,

for any X,Y ∈ Γ(TM). Denoting by ∇̃ the Levi-Civita connection of gS , one
has the following formulas [13]

(2)

(∇̃XhY h)(x,u) = (∇XY )h(x,u) −
1

2
(R(X,Y )Z)v(x,u),

(∇̃XhY v)(x,u) = (∇XY )v(x,u) +
1

2
(R(Z, Y )X)h(x,u),

(∇̃XvY h)(x,u) =
1

2
(R(Z,X)Y )h(x,u),

(∇̃XvY v)(x,u) = 0,

for any X,Y ∈ Γ(TM) and any (x, u) ∈ TM , where Z ∈ Γ(TM) such that
Zπ(x,u) = (x, u).

A vector field X on (M, g) can be viewed as the immersion X : (M, g) →
(TM, gS) ; x 7→ (x,Xx) ∈ TM into its tangent bundle TM equipped with
the Sasaki metric gS . The energy of X is, by definition, the energy of the
corresponding map X : (M, g) → (TM, gS), that is [10]

(3) E(X) =
1

2

∫
M

∥dX∥2 vg =
m

2
V ol(M) +

1

2

∫
M

∥∇X∥2 vg

(assuming M compact; in the non-compact case, one works over compact do-
main). Moreover, the tension field τ(X) is given by [9]

τ(X) =
(
−

m∑
i=1

εiR(∇eiX,X)ei

)h

+
( m∑
i=1

εi(∇ei∇eiX −∇∇ei
eiX)

)v

.

We can rewrite τ(X) as follows [15]:

(4) τ(X) = (−S(X))h + (∇∗∇X)v,

where

S(X) =

m∑
i=1

εiR(∇eiX,X)ei,

and ∇∗∇X is the rough Laplacian given by

∇∗∇X =

m∑
i=1

εi(∇ei∇eiX −∇∇ei
eiX).

A vector field X defines a harmonic map from (M, g) to (TM, gS) if and only
if τ(X) = 0, equivalently ∇∗∇X = 0 and S(X) = 0, X is called harmonic
vector field if it is a critical point of the energy functional (3), only considering
variations among maps defined by vector fields. The corresponding Euler-
Lagrange equation is given by ∇∗∇X = 0, so X is a harmonic map if and only
if X is a harmonic vector field and S(X) = 0.
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3. Biharmonicity of vector fields

In the next Theorem, we compute the bitension field τ2(X) of X.

Theorem 3.1. Let (M, g) be an m-dimensional pseudo-Riemannian man-
ifold and (TM, gS) its tangent bundle equipped with the Sasaki metric. If
X : (M, g) → (TM, gS) is a smooth vector field then the bitension field of X is
given by

τ2(X) =
{
(∇∗∇)2X +

m∑
i=1

εi[(∇eiR)(ei, S(X))X +R(ei,∇eiS(X))X

+ 2R(ei, S(X))∇eiX]
}v

+
{
−∇∗∇S(X)−R(X,∇∗∇X)S(X)

+

m∑
i=1

εi[R(X,∇ei∇∗∇X)ei −R(∇eiX,∇∗∇X)ei +R(ei, S(X))ei

− (∇S(X)R)(X,∇eiX)ei −R(X,∇eiX)∇eiS(X)

+R(X,R(ei, S(X))X)ei]
}h

.(5)

Proof. Let (x, u) ∈ TM and {ei}mi=1 be a local pseudo-orthonormal frame
on M such that ∇eiei = 0 at x ∈ M and u = Xx. If Y ∈ Γ(TM) then, we have
(see [6, pp. 50])

(6) dX(Y ) = {Y h + (∇Y X)v} ◦X,

using (2), (4) and (6), one has

m∑
i=1

∇X
eiτ(X)

∣∣
(x,Xx)

=

m∑
i=1

[
∇̃ehi +(∇ei

X)v (−S(X)h +∇∗∇Xv)
]∣∣

(x,Xx)

=
{ m∑

i=1

[
−∇eiS(X)− 1

2
R(X,∇eiX)S(X)

+
1

2
R(X,∇∗∇X)ei

]}h

(x,Xx)
+

{ m∑
i=1

[
∇ei∇∗∇X

+
1

2
R(ei, S(X))X

]}v

(x,Xx)
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and

m∑
i=1

εi∇X
ei∇

X
eiτ(X)

∣∣
(x,Xx)

=
{ m∑

i=1

εi
[
−∇ei∇eiS(X)− 1

2
∇eiR(X,∇eiX)S(X)

+
1

2
∇eiR(X,∇∗∇X)ei −

1

2
R(X,∇eiX)∇eiS(X)

− 1

4
R(X,∇eiX)R(X,∇eiX)S(X) +

1

4
R(X,∇eiX)R(X,∇∗∇X)ei

+
1

2
R(X,∇ei∇∗∇X)ei +

1

4
R(X,R(ei, S(X))X)ei

]}h

(x,Xx)

+
{ m∑

i=1

εi
[
∇ei∇ei∇∗∇X +

1

2
∇eiR(ei, S(X))X

+
1

2
R(ei,∇eiS(X))X +

1

4
R(ei, R(X,∇eiX)S(X))X

− 1

4
R(ei, R(X,∇∗∇X)ei)X

]}v

(x,Xx)
.(7)

Let R̃ the curvature tensor field of ∇̃. On making use of Theorem 1 in [13], we
find

−
m∑
i=1

εiR̃(dX(ei), τ(X))dX(ei)
∣∣
(x,Xx)

=
{
− 1

2
R(X,∇∗∇X)S(X)

+

m∑
i=1

εi
[
R(ei, S(X))ei +

3

4
R(X,R(ei, S(X))X)ei

− (∇S(X)R)(X,∇eiX)ei +
1

2
(∇eiR)(X,∇eiX)S(X)

+
1

4
R(X,∇eiX)R(X,∇eiX)S(X)− 1

2
(∇eiR)(X,∇∗∇X)ei

+
3

2
R(∇∗∇X,∇eiX)ei −

1

4
R(X,∇eiX)R(X,∇∗∇X)ei

]}h

(x,Xx)

+
{ m∑

i=1

εi
[1
2
(∇eiR)(ei, S(X))X − 3

2
R(S(X), ei)∇eiX

+
1

4
R(R(X,∇eiX)S(X), ei)X − 1

4
R(R(X,∇∗∇X)ei, ei)X

]}v

(x,Xx)
.(8)

On the other hand, we have the following formulae

m∑
i=1

εi∇eiR(X,∇eiX)S(X) =

m∑
i=1

εi
[
(∇eiR)(X,∇eiX)S(X)

+R(X,∇eiX)∇eiS(X)
]
+R(X,∇∗∇X)S(X),(9)
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m∑
i=1

εi∇eiR(X,∇∗∇X)ei =

m∑
i=1

εi
[
(∇eiR)(X,∇∗∇X)ei +R(∇eiX,∇∗∇X)ei

+R(X,∇ei∇∗∇X)ei
]
,(10)

m∑
i=1

εi∇eiR(ei, S(X))X =

m∑
i=1

εi
[
(∇eiR)(ei, S(X))X +R(ei,∇eiS(X))X

+R(ei, S(X))∇eiX
]
.(11)

One can calculate τ2(X) by summing up (7) and (8) and using the formulae
(9)-(11).

Then, we give the following characterization theorem.

Theorem 3.2. Let (M, g) be an m-dimensional pseudo-Riemannian man-
ifold and X ∈ X(M), then X : (M, g) → (TM, gS) is a biharmonic map if and
only if

(∇∗∇)2X +

m∑
i=1

εi[(∇eiR)(ei, S(X))X

+R(ei,∇eiS(X))X + 2R(ei, S(X))∇eiX] = 0,

and

−∇∗∇S(X)−R(X,∇∗∇X)S(X) +

m∑
i=1

εi[R(X,∇ei∇∗∇X)ei

−R(∇eiX,∇∗∇X)ei +R(ei, S(X))ei − (∇S(X)R)(X,∇eiX)ei

−R(X,∇eiX)∇eiS(X) +R(X,R(ei, S(X))X)ei] = 0,

where {ei}mi=1 is a local pseudo-orthonormal frame field of (M, g).

Definition 3.3 ([15]). Let (M, g) be a pseudo-Riemannian manifold. A
vector field X ∈ X(M) is called biharmonic if the corresponding map X :
(M, g) −→ (TM, gS) is a critical point for the bienergy functional E2, only
considering variations among maps defined by vector fields.

By virtue of the formula (5), one obtain another proof of the next Theorem
given in [14].

Theorem 3.4. Let (M, g) be a compact oriented m-dimensional pseudo-
Riemannian manifold, {ei}mi=1 a local pseudo-orthonormal frame field of (M, g),
X a tangent vector field on M and E2 : X(M) −→ [0,+∞) the bienergy
functional restricted to the space of all vector fields. Then

d

dt
E2(Xt)

∣∣∣∣
t=0

=

∫
M

{
g((∇∗∇)2X +

m∑
i=1

εi
[
(∇eiR)(ei, S(X))X

+R(ei,∇eiS(X))X + 2R(ei, S(X))∇eiX
]
, V )

}
vg
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for any smooth 1-parameter variation U : M × (−ϵ, ϵ) → TM of X through
vector fields i.e., Xt(z) = U(z, t) ∈ TzM for any |t| < ϵ and z ∈ M , or
equivalently Xt ∈ X(M) for any |t| < ϵ. Also, V is the tangent vector field on
M given by

V (z) =
d

dt
Xz(0), z ∈ M,

where Xz(t) = U(z, t), (z, t) ∈ M × (−ϵ, ϵ).

Proof. Let U : M×(−ϵ, ϵ) → TM be a smooth variation ofX( i.e., U(z, 0) =
X(z) for any z ∈ M) such that Xt(z) = U(z, t) ∈ TzM for any z ∈ M and any
|t| < ϵ. We have

E2(Xt) =
1

2

∫
M

∥τ(Xt)∥2 vg.

As in the Riemannian case [12], we can write

d

dt
E2(Xt)

∣∣∣∣
t=0

=

∫
M

gS(V, τ2(X))vg,

where V(z) = d
dtXt(z)

∣∣
t=0

, z ∈ M, however from [6, pp. 58], we have

(12) V = V v ◦X.

On making use of the expression of τ2(X) given by (5) and (12), we find

d

dt
E2(Xt)

∣∣∣∣
t=0

=

∫
M

gS(V
v, τ2(X))vg

=

∫
M

{
g(V, (∇∗∇)2X +

m∑
i=1

εi
[
(∇eiR)(ei, S(X))X

+R(ei,∇eiS(X))X + 2R(ei, S(X))∇eiX
]
)
}
vg,

which completes the proof.

Then, we deduce the following [15].

Corollary 3.5. A vector field X of an m-dimensional pseudo-Riemannian
manifold (M, g) is biharmonic if and only if

(∇∗∇)2X +

m∑
i=1

εi[(∇eiR)(ei, S(X))X

+R(ei,∇eiS(X))X + 2R(ei, S(X))∇eiX] = 0,

where {ei}mi=1 is a local pseudo-orthonormal frame field of (M, g).

Remark 3.6. Theorem 3.4 holds if (M, g) is a non-compact pseudo-Riemannian
manifold see [15].

A reformulation of Theorem 3.2 is then
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Corollary 3.7. Let (M, g) be an m-dimensional pseudo-Riemannian mani-
fold andX ∈ X(M). ThenX is a biharmonic map if and only ifX is biharmonic
vector field and

−∇∗∇S(X)−R(X,∇∗∇X)S(X) +

m∑
i=1

εi[R(X,∇ei∇∗∇X)ei

−R(∇eiX,∇∗∇X)ei +R(ei, S(X))ei − (∇S(X)R)(X,∇eiX)ei

−R(X,∇eiX)∇eiS(X) +R(X,R(ei, S(X))X)ei] = 0.

4. Biharmonicity of left-invariant vector fields of Heisenberg group

The Heisenberg group H3 can be seen as the Cartesian 3-space R3(x, y, z)
endowed with multiplication

(x, y, z)(x̄, ȳ, z̄) = (x+ x̄, y + ȳ, z + z̄ − xȳ).

H3 is three-dimensional Lie group. In [18], the authors proved that any left-
invariant Lorentzian metric on H3, is isometric to one of the subsequent metrics

g1 = −dx2 + dy2 + (xdy + dz)2,

g2 = dx2 + dy2 − (xdy + dz)2,

g3 = dx2 + (xdy + dz)2 − ((1− x)dy − dz)2.

In this section we investigate biharmonicity of left-invariant vector fields on H3

endowed with g1, g2 and g3 respectively.

4.1. Biharmonicity of left-invariant vector fields on (H3, g1)

The aim of this subsection is to completely determine the set of left-invariant
vector fields on (H3, g1) which are harmonic and biharmonic maps, respectively.
The left-invariant vector fields

e1 =
∂

∂z
, e2 =

∂

∂y
− x

∂

∂z
, e3 =

∂

∂x
,

constitute an orthonormal basis of the Lie algebra of H3 with

g1(e1, e1) = g1(e2, e2) = 1, g1(e3, e3) = −1,

for which, we have the Lie brackets:

[e2, e3] = e1, [e1, e2] = 0, [e1, e3] = 0.
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The components of the Levi-Civita connection of (H3, g1) are determined by
[18]

∇e1e1 = 0, ∇e1e2 =
1

2
e3, ∇e1e3 =

1

2
e2,

∇e2e1 =
1

2
e3, ∇e2e2 = 0, ∇e2e3 =

1

2
e1,(13)

∇e3e1 =
1

2
e2, ∇e3e2 = −1

2
e1, ∇e3e3 = 0.

Also the curvature components are given by

R(e1, e2)e1 =
1

4
e2, R(e1, e2)e2 = −1

4
e1, R(e1, e2)e3 = 0,

R(e2, e3)e1 = 0, R(e2, e3)e2 = −3

4
e3, R(e2, e3)e3 = −3

4
e2,(14)

R(e3, e1)e1 = −1

4
e3, R(e3, e1)e2 = 0, R(e3, e1)e3 = −1

4
e1.

LetX = αe1+βe2+γe3 be an arbitrary left-invariant vector field on (H3, g1)
where α, β and γ are constants. By using (13) and (14), one has

(15) ∇∗∇X =
α

2
e1 +

β

2
e2 +

γ

2
e3,

(16) (∇∗∇)2X =
α

4
e1 +

β

4
e2 +

γ

4
e3,

(17) S(X) =
αγ

4
e2 +

αβ

4
e3.

By virtue of (13)-(17), a long but straightforward calculation we get

Proposition 4.1. Let X = αe1 + βe2 + γe3 be a left-invariant vector field
on the Lorentzian Lie group (H3, g1). Then,

(∇∗∇)2X +

3∑
i=1

εi[(∇eiR)(ei, S(X))X +R(ei,∇eiS(X))X

+ 2R(ei, S(X))∇eiX] =
α(4− (β2 − γ2))

16
e1 +

β(4− α2)

16
e2 +

γ(4− α2)

16
e3,

and

−∇∗∇S(X)−R(X,∇∗∇X)S(X) +

3∑
i=1

εi[R(X,∇ei∇∗∇X)ei

−R(∇eiX,∇∗∇X)ei +R(ei, S(X))ei − (∇S(X)R)(X,∇eiX)ei

−R(X,∇eiX)∇eiS(X) +R(X,R(ei, S(X))X)ei]

=
αγ(−8− 2(γ2 − β2)− α2)

16
e2 +

αβ(−8− 2(γ2 − β2)− α2)

16
e3.
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From Proposition 4.1, we easily conclude that the vector field X = αe1 +
βe2 + γe3 is biharmonic map if and only if

(18)

 α(4− (β2 − γ2)) = 0,
β(4− α2) = 0,
γ(4− α2) = 0,

and {
αγ(−8− 2(γ2 − β2)− α2) = 0,
αβ(−8− 2(γ2 − β2)− α2) = 0.

In particular, X is a biharmonic vector field if and only if (18) holds. From
the system (18), we obtain that the coordinates of X satisfy the equations of
hyperbolas: C1 = {α = 2, β2 − γ2 = 4} and C2 = {α = −2, β2 − γ2 = 4}.
Summarizing, we yield

Theorem 4.2. Let X = αe1 + βe2 + γe3 be a left-invariant vector field on
the Lorentzian Lie group (H3, g1). Then,

1. X = αe1 + βe2 + γe3 is a biharmonic vector field which does not define
biharmonic map if and only if the coordinates of X satisfy the equations
of the equilateral hyperbolas C1 and C2.

2. The set of left-invariant vector fields which are proper biharmonic maps
into TH3 is empty.

4.2. Biharmonicity of left-invariant vector fields on (H3, g2)

This subsection is devoted to the determination of the set of left-invariant
vector fields on (H3, g2) which are harmonic and biharmonic maps, respectively.
The left-invariant vector fields

e1 =
∂

∂y
− x

∂

∂z
, e2 =

∂

∂x
, e3 =

∂

∂z
,

constitute an orthonormal basis of the Lie algebra of H3 with

g2(e1, e1) = g2(e2, e2) = 1, g2(e3, e3) = −1,

for which, we have the Lie brackets:

[e1, e2] = e3, [e1, e3] = 0, [e2, e3] = 0.

The components of the Levi-Civita connection of (H3, g2) are determined by
[18]

∇e1e1 = 0, ∇e1e2 =
1

2
e3, ∇e1e3 =

1

2
e2,

∇e2e1 = −1

2
e3, ∇e2e2 = 0, ∇e2e3 = −1

2
e1,(19)

∇e3e1 =
1

2
e2, ∇e3e2 = −1

2
e1, ∇e3e3 = 0.
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Also the curvature components are given by

R(e1, e2)e1 = −3

4
e2, R(e1, e2)e2 =

3

4
e1, R(e1, e2)e3 = 0,

R(e2, e3)e1 = 0, R(e2, e3)e2 =
1

4
e3, R(e2, e3)e3 =

1

4
e2,(20)

R(e3, e1)e1 = −1

4
e3, R(e3, e1)e2 = 0, R(e3, e1)e3 = −1

4
e1.

Let X = αe1 + βe2 + γe3 be an arbitrary left-invariant vector field on
(H3, g2). By using (19) and (20), then one obtains

(21) ∇∗∇X =
α

2
e1 +

β

2
e2 +

γ

2
e3,

(22) (∇∗∇)2X =
α

4
e1 +

β

4
e2 +

γ

4
e3,

(23) S(X) =
−βγ

4
e1 +

αγ

4
e2.

By virtue of (19)-(23), long but direct and easy calculations we get

Proposition 4.3. Let X = αe1 + βe2 + γe3 be a left-invariant vector field
on the Lorentzian Lie group (H3, g2). Then,

(∇∗∇)2X +

3∑
i=1

εi[(∇eiR)(ei, S(X))X +R(ei,∇eiS(X))X

+ 2R(ei, S(X))∇eiX] =
α(4 + γ2)

16
e1 +

β(4 + γ2)

16
e2 +

γ(4− (α2 + β2))

16
e3,

and

−∇∗∇S(X)−R(X,∇∗∇X)S(X) +

3∑
i=1

εi[R(X,∇ei∇∗∇X)ei

−R(∇eiX,∇∗∇X)ei +R(ei, S(X))ei − (∇S(X)R)(X,∇eiX)ei

−R(X,∇eiX)∇eiS(X) +R(X,R(ei, S(X))X)ei]

=
βγ(16 + 5(α2 + β2)− 3γ2)

32
e1 +

−αγ(16 + 5(α2 + β2)− 3γ2)

32
e2.

From Proposition 4.3, one conclude that the vector field X = αe1+βe2+γe3
is biharmonic map if and only if

(24)

 α(4 + γ2) = 0,
β(4 + γ2) = 0,
γ(4− (α2 + β2)) = 0,

and

(25)

{
βγ(16 + 5(α2 + β2)− 3γ2) = 0,
αγ(16 + 5(α2 + β2)− 3γ2) = 0.
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In particular, X is biharmonic vector field if and only if (24) holds. From (24)
and (25), one has

Theorem 4.4. We have the following statements on the Lorentzian Lie
group (H3, g2):

1. The set of left-invariant biharmonic vector fields which do not define
harmonic maps into TH3 is empty.

2. The set of left-invariant vector fields which are proper biharmonic maps
into TH3 is empty.

4.3. Biharmonicity of left-invariant vector fields on (H3, g3)

In this subsection we aim to completely determine the set of left-invariant
vector fields on (H3, g3) which are harmonic and biharmonic maps, respectively.
The left-invariant vector fields

e1 =
∂

∂x
, e2 =

∂

∂y
+ (1− x)

∂

∂z
, e3 =

∂

∂y
− x

∂

∂z
,

constitute an orthonormal basis of the Lie algebra of H3 with

g3(e1, e1) = g3(e2, e2) = 1, g3(e3, e3) = −1,

for which, we have the Lie brackets:

[e2, e3] = 0, [e3, e1] = e2 − e3, [e2, e1] = e2 − e3.

The components of the Levi-Civita connection of (H3, g3) are determined by
[18]

∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = 0,

∇e2e1 = e2 − e3, ∇e2e2 = −e1, ∇e2e3 = −e1,(26)

∇e3e1 = e2 − e3, ∇e3e2 = −e1, ∇e3e3 = −e1.

Let X = αe1 + βe2 + γe3 be an arbitrary left-invariant vector field on
(H3, g3). By using (26), we get that ∇∗∇X = 0 and since g3 is flat we deduce
that S(X) = 0. Then, we yield

Theorem 4.5. On the Lorentzian Lie group (H3, g3), every left-invariant
vector field is biharmonic map.

5. Gödel universe

An interesting space-time in general relativity is the classical Gödel universe
[10]. This model is R4 endowed with the metric

⟨·, ·⟩L = dx2
1 + dx2

2 −
1

2
e2αx1dy2 − 2eαx1dydt− dt2,
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where α is a positive constant. We denote by ∂ȳ =
√
2(e−αx1∂y−∂t). The Levi-

Civita connection in the pseudo-orthonormal frame field {e1, e2, e3, e4} where
e1 = ∂x1

, e2 = ∂x2
, e3 = ∂ȳ and e4 = ∂t, is given by [10]

(27)

∇e1e4 = − α√
2
e3, ∇e2e4 = 0, ∇e3e4 =

α√
2
e1,

∇e4e4 = 0, ∇e1e1 = 0, ∇e2e1 = 0,

∇e3e1 =
α√
2
e4 + αe3, ∇e2e2 = 0, ∇e3e2 = 0,

∇e1e3 = − α√
2
e4, ∇e3e3 = −αe1.

Taking the vector field X = f(x2)e4, where f(x2) is a smooth real function
depending of the variable x2. From [15] we have

(28) R(e1, e4)e3 = R(e3, e4)e1 = 0,

(29) ∇∗∇X = (f ′′ + α2f)e4,

(∇∗∇)2X = (f ′′′′ + 2α2f ′′ + α4f)e4,

and

S(X) = 0,

where f ′ = df
dz , f

′′ = d2f
dz2 etc. By virtue of relations (27), (28) and (29), we get

3∑
i=1

εiR(X,∇ei∇∗∇X)ei = 0, and

3∑
i=1

εiR(∇eiX,∇∗∇X)ei = 0.

Then, from Theorem 3.2, it follows that X is biharmonic map if and only if
the function f satisfies the subsequent differential equation.

(30) f ′′′′ + 2α2f ′′ + α4f = 0.

Note that (30) is homogeneous fourth order differential equation with general
solution see [15]

(31) f(x2) = c1 cos(αx2) + c2 sin(αx2) + c3x2 cos(αx2) + c4x2 sin(αx2),

where c1, c2, c3 and c4 are real constants. Particularly, in [14] Markellos and
Urakawa proved that X = f(x2)e4 is biharmonic vector field, where f(x2) is
given by (31).

Proposition 5.1. The vector fields X = x2(c3 cos(αx2) + c4 sin(αx2))e4
are proper biharmonic maps of (R4, ⟨·, ·⟩L).
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[1] A. Alem, B. Kacimi, and M. Özkan, Vector fields which are biharmonic maps, J. Geom.

113 (2022), Article Number 14.
[2] P. Baird and J. C. Wood, Harmonic morphisms between Riemannian manifolds, In:

Lond. Math. Soc. Monogr., vol. 29, Oxford University Press, Oxford, 2003.

[3] G. Calvaruso, Harmonicity properties of invariant vector fields on three-dimensional
Lorentzian Lie groups, J. Geom. Phys. 61 (2011), 498–515.

[4] P. Dombrowski, On the geometry of tangent bundle, J. Reine Angew. Math. 210 (1962),

73–88.
[5] Y. Dong and Y. Lin-Ou, Biharmonic submanifolds of pseudo-Riemannian manifolds, J.

Geom. Phys. 112 (2017), 252–262.

[6] S. Dragomir and D. Perrone, Harmonic Vector fields: Variational Principles and Dif-
ferential Geometry, Elsevier, Amsterdam, 2011.

[7] J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Regional Conference
Series in Mathematics, vol. 50, Amer. Math. Soc., Providence, 1983.

[8] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J.

Math. 86 (1964), no. 1, 109–160.
[9] O. Gil-Medrano, Relationship between volume and energy of unit vector fields, Differ.

Geo. Appl. 15 (2001), 137–152.

[10] O. Gil-Medrano and A. Hurtado, Spacelike energy of timelike unit vector fields on a
Lorentzian manifold, J. Geom. Phys. 51 (2004), 82–100.

[11] T. Ishihara, Harmonic sections of tangent bundles, J. Math. Tokushima Univ. 13 (1979),

23–27.
[12] G. Jiang, 2-Harmonic maps and their first and second variational formulas, Translated

into English by Hajime Urakawa. Note Mat. 28 (2008), no. 1, 209–232.

[13] O. Kowalski, Curvature of the induced Riemannian metric on the tangent bundle of a
Riemannian manifold, J. Reine Angew. Math. 250 (1971), 124–129.

[14] M. Markellos and H. Urakawa, The biharmonicity of sections of the tangent bundle,
Monatsh. Math. 178 (2015), 389–404.

[15] M. Markellos and H. Urakawa, Biharmonic vector fields on pseudo-Riemannian mani-

folds, J. Geom. Phys. 130 (2018), 293–314.
[16] O. Nouhaud, Applications harmoniques d’une variété Riemannienne dans son fibré tan-
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