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ON RESULTS OF MIDPOINT-TYPE INEQUALITIES FOR

CONFORMABLE FRACTIONAL OPERATORS WITH

TWICE-DIFFERENTIABLE FUNCTIONS

Fatih Hezenci∗ and Hüseyin Budak

Abstract. This article establishes an equality for the case of twice-
differentiable convex functions with respect to the conformable fractional

integrals. With the help of this identity, we prove sundry midpoint-
type inequalities by twice-differentiable convex functions according to

conformable fractional integrals. Several important inequalities are ob-

tained by taking advantage of the convexity, the Hölder inequality, and
the power mean inequality. Using the specific selection of our results, we

obtain several new and well-known results in the literature.

1. Introduction

The convex theory is a suitable and attractive way to analyse a large num-
ber of problems from different branches of mathematics. One of the most used
inequalities for convex functions is the Hermite–Hadamard-type inequality. Be-
cause of this importance, the Hermite–Hadamard-type inequalities have been
investigated seriously by many mathematicians in the last century.

Hermite–Hadamard-type inequalities which have been first introduced by
C. Hermite and J. Hadamard for the case of convex functions. If F : I → R
is a convex function on the interval I of real numbers and a, b ∈ I with a < b,
then the following double inequality holds:

(1) F
(
a+ b

2

)
≤ 1

b− a

b∫
a

F(x)dx ≤ F (a) + F (b)

2
.

Midpoint-type inequality which is the left hand side of (1) and trapezoid-type
inequality which is the right hand side of (1). If F is concave, then both
inequalities in (1) hold in the reverse direction.
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Fractional calculus is a field of mathematics that expands the traditional
derivative and integral ideas to non-integer orders. Riemann-Liouville frac-
tional integrals, conformable fractional integrals, and many types of fractional
integrals have been investigated with Hermite–Hadamard-type inequalities. In
recent decades, it has piqued the curiosity of mathematicians, physicists, and
engineers [28, 3]. Moreover, fractional derivatives are also used to model a wide
range of mathematical biology, as well as chemical processes and engineering
problems [4, 9]. With the aid of the derivative’s fundamental limit formula-
tion, a newly well-behaved basic fractional derivative known as the conformable
derivative is improved in paper [22]. Several major requirements that cannot
be implemented by the Riemann-Liouville and Caputo definitions are imple-
mented by the conformable derivative. On the other hand, in paper [2] the
author established that the conformable approach in [22] cannot yield good
results when compared to the Caputo definition for specific functions. This
flaw in the conformable definition was avoided by several extensions of the
conformable approach [29, 14].

Many mathematicians have focused on acquired midpoint-type and trapezoid-
type inequalities that give bounds via the left-hand side and right-hand side of
the Hermite–Hadamard-type inequalities, respectively. For example, Dragomir
and Agarwal [8] first presented trapezoid-type inequalities for the case of con-
vex functions while Kirmacı[21] first established inequalities of midpoint-type
inequalities for the case of convex functions. In paper [25], Qaisar and Hussain
proved some generalized midpoint-type inequalities. Moreover, Sarikaya et al.
and Iqbal et al. established sundry fractional midpoint and trapezoid-type in-
equalities to the case of convex mappings in papers [16] and [27], respectively.
Furthermore, several Hermite–Hadamard-type inequalities for the fractional in-
tegrals are presented in paper [15]. For results connected with these type of
inequalities one can see Refs. [10, 19] and the references therein.

Large number of mathematicians have investigated the twice-differentiable
convex functions to obtain sundry important inequalities. For instance, Barani
et al. [5] established inequalities for the case of twice-differentiable convex
mappings which are related to Hermite–Hadamard-type inequalities. In pa-
per [23], several generalized fractional integral inequalities of trapezoid-type
and midpoint-type for the case of twice-differentiable convex functions are ob-
tained. Moreover, Sarikaya and Aktan [26] established several new inequalities
of the Simpson and the Hermite–Hadamard-type for functions whose abso-
lute values of derivatives are convex. The reader is referred to [13, 7, 11]
and the references therein for more information and unexplained subjects con-
nected with several properties of Riemann-Liouville fractional integrals and
twice-differentiable convex functions.

The aim of this paper is to prove midpoint-type inequalities for the case
of twice-differentiable convex functions involving conformable fractional inte-
grals. The whole form of the study takes the form of four sections involving
introduction. In Section 2, the fundamental definitions of convex functions,
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Riemann-Liouville integrals and conformable integrals will be explained for
building our principal outcomes. In Section 3, an equality will be proved for
the case of twice-differentiable convex functions related to the conformable frac-
tional integrals. With the aid of this identity, we give several midpoint-type
inequalities for twice-differentiable convex functions according to conformable
fractional integrals. Furthermore, we also present several corollaries and re-
marks in this section. Finally, summary and concluding remarks are given in
Section 4.

2. Preliminaries

This section gives the fundamental definitions of convex functions, Riemann-
Liouville integrals and conformable integrals, which are well known in the lit-
erature in order to build our main results.

Definition 2.1. [24] Suppose that I is an interval of real numbers. Then,
a function F : I → R is said to be convex, if

F (tx+ (1− t) y) ≤ tF (x) + (1− t)F (y)

is satisfied ∀x, y ∈ I and ∀t ∈ [0, 1].

Definition 2.2. The gamma function, beta function, and incomplete beta
function are represented

Γ (x) :=

∞∫
0

tx−1e−tdt,

B (x, y) :=

1∫
0

tx−1 (1− t)
y−1

dt,

and

B (x, y, r) :=

r∫
0

tx−1 (1− t)
y−1

dt,

respectively for 0 < x, y <∞.

Kilbas et al. [20] defined fractional integrals, also called Riemann-Liouville
integrals as follows:

Definition 2.3. [20] The Riemann-Liouville integrals Jβ
a+F(x) and Jβ

b−F(x)
of order β > 0 are given by

(2) Jβ
a+F(x) =

1

Γ(β)

∫ x

a

(x− t)
β−1 F(t)dt, x > a
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and

(3) Jβ
b−F(x) =

1

Γ(β)

∫ b

x

(t− x)
β−1 F(t)dt, x < b,

respectively for F ∈ L1[a, b]. Note that the Riemann-Liouville integrals coin-
cides with the classical integrals for the case of β = 1.

Jarad et al. [18] established the fractional conformable integral operators.
They also derived certain characteristics and relationships between these op-
erators and several other fractional operators in the literature. The fractional
conformable integral operators are described as follows:

Definition 2.4. [18] The fractional conformable integral operator βJ α
a+F(x)

and βJ α
b−F(x) of order β ∈ C, Re(β) > 0 and α ∈ (0, 1] are presented by

(4) βJ α
a+F(x) =

1

Γ(β)

∫ x

a

(
(x− a)α − (t− a)α

α

)β−1 F(t)

(t− a)1−α
dt, t > a

and

(5) βJ α
b−F(x) =

1

Γ(β)

∫ b

x

(
(b− x)α − (b− t)α

α

)β−1 F(t)

(b− t)1−α
dt, t < b,

respectively for F ∈ L1[a, b].

If we choose α = 1, then the fractional integrals in (4) and (5) equals to the
Riemann-Liouville fractional integrals in (2) and (3), respectively. There have
been a great number of research papers written on these subjects, [1, 17] and
the references therein.

3. Main Results

In this section, midpoint-type inequalities are created for the case of twice-
differentiable convex functions related to the conformable fractional integrals.
Let us first set up the following identity in order to obtain conformable frac-
tional versions of midpoint-type inequalities.

Lemma 3.1. Assume that F : [a, b] → R is a twice-differentiable function
on (a, b) such that F ′′ ∈ L1 [a, b]. Then, the following equality holds:

αβΓ (β + 1)

2 (b− a)
αβ

[
βJ α

b−F (a) + βJ α
a+F (b)

]
−F

(
a+ b

2

)
=

(b− a)
2
αβ

2

4∑
i=1

Ai,

(6)
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where 

A1 =

1
2∫
0

(
t∫
0

(
1−(1−s)α

α

)β
ds

)
F ′′ (tb+ (1− t) a) dt,

A2 =

1
2∫
0

(
t∫
0

(
1−(1−s)α

α

)β
ds

)
F ′′ (ta+ (1− t) b) dt,

A3 =
1∫
1
2

(
1∫
t

[
1
αβ −

(
1−(1−s)α

α

)β]
ds

)
F ′′ (tb+ (1− t) a) dt,

A4 =
1∫
1
2

(
1∫
t

[
1
αβ −

(
1−(1−s)α

α

)β]
ds

)
F ′′ (ta+ (1− t) b) dt.

Proof. From the fact of the integrating by parts, it yields

A1 =

1
2∫

0

 t∫
0

(
1− (1− s)

α

α

)β

ds

F ′′ (tb+ (1− t) a) dt(7)

=
1

b− a

 t∫
0

(
1− (1− s)

α

α

)β

ds

F ′ (tb+ (1− t) a)

∣∣∣∣∣∣
1
2

0

− 1

b− a

1
2∫

0

(
1− (1− t)

α

α

)β

F ′ (tb+ (1− t) a) dt

=
1

b− a


1
2∫

0

(
1− (1− s)

α

α

)β

ds

F ′
(
a+ b

2

)

− 1

b− a

 1

b− a

(
1− (1− t)

α

α

)β

F (tb+ (1− t) a)

∣∣∣∣∣
1
2

0

− β

b− a

1
2∫

0

(
1− (1− t)

α

α

)β−1

(1− t)
α−1 F (tb+ (1− t) a) dt





Conformable fractional version of midpoint-type inequalities 345

=
1

b− a


1
2∫

0

(
1− (1− s)

α

α

)β

ds

F ′
(
a+ b

2

)

− 1

(b− a)
2

(
1−

(
1
2

)α
α

)β

F
(
a+ b

2

)

+
β

(b− a)
2

1
2∫

0

(
1− (1− t)

α

α

)β−1

(1− t)
α−1 F (tb+ (1− t) a) dt.

Similar to foregoing process, we have

A2 = − 1

b− a


1
2∫

0

(
1− (1− s)

α

α

)β

ds

F ′
(
a+ b

2

)
(8)

− 1

(b− a)
2

(
1−

(
1
2

)α
α

)β

F
(
a+ b

2

)

+
β

(b− a)
2

1
2∫

0

(
1− (1− t)

α

α

)β−1

(1− t)
α−1 F (ta+ (1− t) b) dt,

A3 = − 1

b− a

 1∫
1
2

[
1

αβ
−
(
1− (1− s)

α

α

)β
]
ds

F ′
(
a+ b

2

)
(9)

− 1

(b− a)
2

(
1

αβ
−

1−
(
1
2

)α
α

)β

F
(
a+ b

2

)

+
β

(b− a)
2

1∫
1
2

(
1− (1− t)

α

α

)β−1

(1− t)
α−1 F (tb+ (1− t) a) dt,



346 Fatih Hezenci and Hüseyin Budak

and

A4 =
1

b− a

 1∫
1
2

[
1

αβ
−
(
1− (1− s)

α

α

)β
]
ds

F ′
(
a+ b

2

)
(10)

− 1

(b− a)
2

(
1

αβ
−

1−
(
1
2

)α
α

)β

F
(
a+ b

2

)

+
β

(b− a)
2

1∫
1
2

(
1− (1− t)

α

α

)β−1

(1− t)
α−1 F (ta+ (1− t) b) dt.

If we collect from (7) to (10), then we can obtain

4∑
i=1

Ai =
β

(b− a)
2

1∫
0

(
1− (1− t)

α

α

)β−1

(1− t)
α−1 F (tb+ (1− t) a) dt(11)

+
β

(b− a)
2

1∫
0

(
1− (1− t)

α

α

)β−1

(1− t)
α−1 F (ta+ (1− t) b) dt

− 2

(b− a)
2
αβ

F
(
a+ b

2

)
.

If we use change of variables in (11), then (11) is converted as follows:

4∑
i=1

Ai = − 2

(b− a)
2
αβ

F
(
a+ b

2

)
+

(
1

b− a

)αβ+2
Γ (β + 1)

Γ (β)

(12)

×
b∫

a

(
(b− a)

α − (b− x)
α

α

)β−1 F (x)

(b− x)
1−αF (x) dx+

(
1

b− a

)αβ+2

× Γ (β + 1)

Γ (β)

b∫
a

(
(b− a)

α − (x− a)
α

α

)β−1 F (x)

(x− a)
1−αF (x) dx
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=
Γ (β + 1)

(b− a)
αβ+2

[
βJ α

b−F (a) +β J α
a+F (b)

]
− 2

(b− a)
2
αβ

F
(
a+ b

2

)
.

If (12) is multiplied by (b−a)2αβ

2 , then the proof of Lemma 3.1 is finished.

Theorem 3.2. If F : [a, b] → R is a twice-differentiable function on (a, b)
such that F ′′ ∈ L1 [a, b] and |F ′′| is convex on [a, b], then∣∣∣∣∣αβΓ (β + 1)

2 (b− a)
αβ

[
βJ α

b−F (a) + βJ α
a+F (b)

]
−F

(
a+ b

2

)∣∣∣∣∣(13)

≤ (b− a)
2
αβ

2
{φ1 (α, β) + φ2 (α, β)} [|F ′′ (a)|+ |F ′′ (b)|]

is valid. Here,

(14)



φ1 (α, β) =

1
2∫
0

(
t∫
0

(
1−(1−s)α

α

)β
ds

)
dt

= 1
αβ+1

1
2∫
0

(
B
(
1
α , β + 1

)
− B

(
1
α , β + 1, (1− t)

α))
dt,

φ2 (α, β) =
1∫
1
2

(
1∫
t

[
1
αβ −

(
1−(1−s)α

α

)β]
ds

)
dt

= 1
αβ

1∫
1
2

(
1− t− 1

α

(
B
(
β + 1, 1

α

)
− B

(
β + 1, 1

α , 1− (1− t)
α)))

dt,

where B and B denote the beta function and incomplete beta function, re-
spectively.

Proof. If we take the absolute value of both sides of (6), then we have the
following inequality∣∣∣∣∣αβΓ (β + 1)

2 (b− a)
αβ

[
βJ α

b−F (a) + βJ α
a+F (b)

]
−F

(
a+ b

2

)∣∣∣∣∣(15)

≤ (b− a)
2
αβ

2


1
2∫

0

∣∣∣∣∣∣
t∫

0

(
1− (1− s)

α

α

)β

ds

∣∣∣∣∣∣ |F ′′ (tb+ (1− t) a)| dt
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+

1
2∫

0

∣∣∣∣∣∣
t∫

0

(
1− (1− s)

α

α

)β

ds

∣∣∣∣∣∣ |F ′′ (ta+ (1− t) b)| dt

+

1∫
1
2

∣∣∣∣∣∣
1∫

t

[
1

αβ
−
(
1− (1− s)

α

α

)β
]
ds

∣∣∣∣∣∣ |F ′′ (tb+ (1− t) a)| dt

+

1∫
1
2

∣∣∣∣∣∣
1∫

t

[
1

αβ
−
(
1− (1− s)

α

α

)β
]
ds

∣∣∣∣∣∣ |F ′′ (ta+ (1− t) b)| dt

 .

Because |F ′′| is convex on [a, b], we can easily obtain the following inequality∣∣∣∣∣αβΓ (β + 1)

2 (b− a)
αβ

[
βJ α

b−F (a) + βJ α
a+F (b)

]
−F

(
a+ b

2

)∣∣∣∣∣

≤ (b− a)
2
αβ

2


1
2∫

0

 t∫
0

(
1− (1− s)

α

α

)β

ds



× [t |F ′′ (b)|+ (1− t) |F ′′ (a)|+ t |F ′′ (a)|+ (1− t) |F ′′ (b)|] dt

+

1∫
1
2

 1∫
t

[
1

αβ
−
(
1− (1− s)

α

α

)β
]
ds



× [t |F ′′ (b)|+ (1− t) |F ′′ (a)|+ t |F ′′ (a)|+ (1− t) |F ′′ (b)|] dt}

=
(b− a)

2
αβ

2


1
2∫

0

 t∫
0

(
1− (1− s)

α

α

)β

ds

 dt

+

1∫
1
2

 1∫
t

[
1

αβ
−
(
1− (1− s)

α

α

)β
]
ds

 dt

 [|F ′′ (a)|+ |F ′′ (b)|] .
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This ends the proof of Theorem 3.2.

Remark 3.3. If we set α = 1 in Theorem 3.2, then we reduces to∣∣∣∣∣ Γ (β + 1)

2 (b− a)
β

[
Jβ
b−F (a) + Jβ

a+F (b)
]
−F

(
a+ b

2

)∣∣∣∣∣
≤ (b− a)

2

2

{
1

8
− β

2 (β + 1) (β + 2)

}
[|F ′′ (a)|+ |F ′′ (b)|] ,

which is established by Hezenci et al. in [12].

Remark 3.4. Let us consider α = 1 and β = 1 in Theorem 3.2. Then,
Theorem 3.2 becomes to∣∣∣∣∣∣ 1

b− a

b∫
a

F (x) dx−F
(
a+ b

2

)∣∣∣∣∣∣ ≤ (b− a)
2

48
[|F ′′ (a)|+ |F ′′ (b)|] ,

which is given in [26, Proposition 1].

Theorem 3.5. Note that F : [a, b] → R is a twice-differentiable function
on (a, b) such that F ′′ ∈ L1 [a, b]. Note also that |F ′′|q is convex on [a, b] with
q > 1. Then, the following inequalities hold:∣∣∣∣∣αβΓ (β + 1)

2 (b− a)
αβ

[
βJ α

b−F (a) + βJ α
a+F (b)

]
−F

(
a+ b

2

)∣∣∣∣∣(16)

≤ (b− a)
2
αβ

21+
1
q

((
ψα,β
1 (p)

) 1
p

+
(
ψα,β
2 (p)

) 1
p

)

×

[(
|F ′′ (b)|q + 3 |F ′′ (a)|q

4

) 1
q

+

(
|F ′′ (a)|q + 3 |F ′′ (b)|q

4

) 1
q

]

≤ (b− a)αβ

21+
1
q

((
4ψα,β

1 (p)
) 1

p

+
(
4ψα,β

2 (p)
) 1

p

)
[|F ′′ (a)|+ |F ′′ (b)|] .

Here, 1
p + 1

q = 1 and
ψα,β
1 (p) =

1
2∫
0

∣∣∣∣ t∫
0

(
1−(1−s)α

α

)β
ds

∣∣∣∣p dt,
ψα,β
2 (p) =

1∫
1
2

∣∣∣∣ 1∫
t

[
1
αβ −

(
1−(1−s)α

α

)β]
ds

∣∣∣∣p dt.
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Proof. If we use Hölder inequality in (15), then we have∣∣∣∣∣αβΓ (β + 1)

2 (b− a)
αβ

[
βJ α

b−F (a) + βJ α
a+F (b)

]
−F

(
a+ b

2

)∣∣∣∣∣

≤ (b− a)
2
αβ

2




1
2∫

0

∣∣∣∣∣∣
t∫

0

(
1− (1− s)

α

α

)β

ds

∣∣∣∣∣∣
p

dt


1
p

×




1
2∫

0

|F ′′ (tb+ (1− t) a)|q dt


1
q

+


1
2∫

0

|F ′′ (ta+ (1− t) b)|q dt


1
q



+

 1∫
1
2

∣∣∣∣∣∣
1∫

t

[
1

αβ
−
(
1− (1− s)

α

α

)β
]
ds

∣∣∣∣∣∣
p

dt


1
p

×


 1∫

1
2

|F ′′ (tb+ (1− t) a)|q dt


1
q

+

 1∫
1
2

|F ′′ (ta+ (1− t) b)|q dt


1
q


 .

Note that |F ′′|q is convex on [a, b]. Then, we obtain∣∣∣∣∣αβΓ (β + 1)

2 (b− a)
αβ

[
βJ α

b−F (a) + βJ α
a+F (b)

]
−F

(
a+ b

2

)∣∣∣∣∣

≤ (b− a)
2
αβ

2




1
2∫

0

 t∫
0

(
1− (1− s)

α

α

)β

ds

p

dt


1
p

×




1
2∫

0

(
t |F ′′ (b)|q + (1− t) |F ′′ (a)|q

)
dt


1
q
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+


1
2∫

0

(
t |F ′′ (a)|q + (1− t) |F ′′ (b)|q

)
dt


1
q



+

 1∫
1
2

 1∫
t

[
1

αβ
−
(
1− (1− s)

α

α

)β
]
ds

p

dt


1
p

×


 1∫

1
2

(
t |F ′′ (b)|q + (1− t) |F ′′ (a)|q

)
dt


1
q

+

 1∫
1
2

(
t |F ′′ (a)|q + (1− t) |F ′′ (b)|q

)
dt


1
q




=
(b− a)

2
αβ

21+
1
q

((
ψα,β
1 (p)

) 1
p

+
(
ψα,β
2 (p)

) 1
p

)

×

[(
|F ′′ (b)|q + 3 |F ′′ (a)|q

4

) 1
q

+

(
|F ′′ (a)|q + 3 |F ′′ (b)|q

4

) 1
q

]
.

The second inequality of Theorem 3.5 can be obtained simultaneously by
letting ϕ1 = 3 |F ′′ (a)|q , ϱ1 = |F ′′ (b)|q , ϕ2 = |F ′′ (a)|q and ϱ2 = 3 |F ′′ (b)|q
and applying the following inequality:

n∑
k=1

(ϕk + ϱk)
s ≤

n∑
k=1

ϕsk +

n∑
k=1

ϱsk, 0 ≤ s < 1,

which finishes the proof of Theorem 3.5.

Remark 3.6. Let us consider α = 1 in Theorem 3.5. Then, we derive∣∣∣∣∣ Γ (β + 1)

2 (b− a)
β

[
Jβ
b−F (a) + Jβ

a+F (b)
]
−F

(
a+ b

2

)∣∣∣∣∣
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≤ (b− a)
2

21+
1
q

(
1

β + 1

(
1

(p (β + 1) + 1) 2p(β+1)+1

) 1
p

+
(
ψ1,β
2 (p)

) 1
p

)

×

[(
|F ′′ (b)|q + 3 |F ′′ (a)|q

4

) 1
q

+

(
|F ′′ (a)|q + 3 |F ′′ (b)|q

4

) 1
q

]

≤ (b− a)αβ

21+
1
q

((
4

(β + 1)
p
(p (β + 1) + 1) 2p(β+1)+1

) 1
p

+
(
4ψ1,β

2 (p)
) 1

p

)

× [|F ′′ (a)|+ |F ′′ (b)|] ,

which are given in [12].

Remark 3.7. If we choose α = 1 and β = 1 in Theorem 3.5, then we have∣∣∣∣∣∣ 1

b− a

b∫
a

F (x) dx−F
(
a+ b

2

)∣∣∣∣∣∣
≤ (b− a)

2

16

(
1

2p+ 1

) 1
p

×

[(
|F ′ (b)|q + 3 |F ′ (a)|q

4

) 1
q

+

(
|F ′ (a)|q + 3 |F ′ (b)|q

4

) 1
q

]

≤ (b− a)
2

16

(
4

2p+ 1

) 1
p

[|F ′′ (a)|+ |F ′′ (b)|] ,

which are given in [6, Corollary 4.8].

Theorem 3.8. Suppose that F : [a, b] → R is a twice-differentiable function
on (a, b) such that F ′′ ∈ L1 [a, b] and |F ′′|q is convex on [a, b] with q ≥ 1. Then,
the following inequality holds:∣∣∣∣∣αβΓ (β + 1)

2 (b− a)
αβ

[
βJ α

b−F (a) + βJ α
a+F (b)

]
−F

(
a+ b

2

)∣∣∣∣∣
≤ (b− a)

2
αβ

2

{
(φ1 (α, β))

1− 1
q
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×
[(
φ3 (α, β) |F ′′ (b)|q + (φ1 (α, β)− φ3 (α, β)) |F ′′ (a)|q

) 1
q

+
(
φ3 (α, β) |F ′′ (a)|q + (φ1 (α, β)− φ3 (α, β)) |F ′′ (b)|q

) 1
q

]

+ (φ2 (α, β))
1− 1

q

[(
φ4 (α, β) |F ′′ (b)|q + (φ2 (α, β)− φ4 (α, β)) |F ′′ (a)|q

) 1
q

+
(
φ4 (α, β) |F ′′ (a)|q + (φ2 (α, β)− φ4 (α, β)) |F ′′ (b)|q

) 1
q

]}
.

Here, φ1 (α, β), φ2 (α, β) are defined in (14) and

φ3 (α, β) =

1
2∫
0

t

(
t∫
0

(
1−(1−s)α

α

)β
ds

)
dt

= 1
αβ+1

1
2∫
0

t
(
B
(
1
α , β + 1

)
− B

(
1
α , β + 1, (1− t)

α))
dt,

φ4 (α, β) =
1∫
1
2

t

(
1∫
t

[
1
αβ −

(
1−(1−s)α

α

)β]
ds

)
dt

= 1
αβ

1∫
1
2

t
[
1− t− 1

α

(
B
(
β + 1, 1

α

)
− B

(
β + 1, 1

α , 1− (1− t)
α))]

dt,

where B and B denote the beta function and incomplete beta function, re-
spectively.

Proof. Let us apply power-mean inequality in (15). Then, we have∣∣∣∣∣αβΓ (β + 1)

2 (b− a)
αβ

[
βJ α

b−F (a) + βJ α
a+F (b)

]
−F

(
a+ b

2

)∣∣∣∣∣

≤ (b− a)
2
αβ

2




1
2∫

0

∣∣∣∣∣∣
t∫

0

(
1− (1− s)

α

α

)β

ds

∣∣∣∣∣∣ dt


1− 1
q

×




1
2∫

0

∣∣∣∣∣∣
t∫

0

(
1− (1− s)

α

α

)β

ds

∣∣∣∣∣∣ |F ′′ (tb+ (1− t) a)|q dt


1
q
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+


1
2∫

0

∣∣∣∣∣∣
t∫

0

(
1− (1− s)

α

α

)β

ds

∣∣∣∣∣∣ |F ′′ (ta+ (1− t) b)|q dt


1
q



+

 1∫
1
2

∣∣∣∣∣∣
1∫

t

[
1

αβ
−
(
1− (1− s)

α

α

)β
]
ds

∣∣∣∣∣∣ dt


1− 1
q

×


 1∫

1
2

∣∣∣∣∣∣
1∫

t

[
1

αβ
−
(
1− (1− s)

α

α

)β
]
ds

∣∣∣∣∣∣ |F ′′ (tb+ (1− t) a)|q dt


1
q

+

 1∫
1
2

∣∣∣∣∣∣
1∫

t

[
1

αβ
−
(
1− (1− s)

α

α

)β
]
ds

∣∣∣∣∣∣ |F ′′ (ta+ (1− t) b)|q dt


1
q


 .

Since |F ′′|q is convex on [a, b], we obtain∣∣∣∣∣αβΓ (β + 1)

2 (b− a)
αβ

[
βJ α

b−F (a) + βJ α
a+F (b)

]
−F

(
a+ b

2

)∣∣∣∣∣

≤ (b− a)
2
αβ

2




1
2∫

0

 t∫
0

(
1− (1− s)

α

α

)β

ds

 dt


1− 1

q

×




1
2∫

0

 t∫
0

(
1− (1− s)

α

α

)β

ds

(t |F ′′ (b)|q + (1− t) |F ′′ (a)|q
)
dt


1
q

+


1
2∫

0

 t∫
0

(
1− (1− s)

α

α

)β

ds

(t |F ′′ (a)|q + (1− t) |F ′′ (b)|q
)
dt


1
q
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+

 1∫
1
2

 1∫
t

[
1

αβ
−
(
1− (1− s)

α

α

)β
]
ds

 dt


1− 1

q

×


 1∫

1
2

 1∫
t

[
1

αβ
−
(
1− (1− s)

α

α

)β
]
ds



×
(
t |F ′′ (b)|q + (1− t) |F ′′ (a)|q

)
dt
) 1

q

+

 1∫
1
2

 1∫
t

[
1

αβ
−
(
1− (1− s)

α

α

)β
]
ds



×
(
t |F ′′ (a)|q + (1− t) |F ′′ (b)|q

)
dt
) 1

q

]}
,

which ends the proof of Theorem 3.8.

Remark 3.9. If we assign α = 1 in Theorem 3.8, then we acquire∣∣∣∣∣ Γ (β + 1)

2 (b− a)
β

[
Jβ
b−F (a) + Jβ

a+F (b)
]
−F

(
a+ b

2

)∣∣∣∣∣
≤ (b− a)

2

2

{
(φ1 (1, β))

1− 1
q

×
[(
φ3 (1, β) |F ′′ (b)|q + (φ1 (1, β)− φ3 (1, β)) |F ′′ (a)|q

) 1
q

+
(
φ3 (1, β) |F ′′ (a)|q + (φ1 (1, β)− φ3 (1, β)) |F ′′ (b)|q

) 1
q

]

+ (φ2 (1, β))
1− 1

q

[(
φ4 (1, β) |F ′′ (b)|q + (φ2 (1, β)− φ4 (1, β)) |F ′′ (a)|q

) 1
q

+
(
φ4 (1, β) |F ′′ (a)|q + (φ2 (1, β)− φ4 (1, β)) |F ′′ (b)|q

) 1
q

]}
,
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which is presented in [12]. Here,
φ1 (1, β) =

1
(β+1)(β+2)2β+2 , φ2 (1, β) =

1
β+1

[
β+1
8 −

(
1+β2β+1

(β+2)2β+2

)]
,

φ3 (1, β) =
1

(β+1)(β+3)2β+3 , φ4 (1, β) =
1

β+1

[
2β−7
24 + 2β+3−1

(β+3)2β+3

]
.

Remark 3.10. Consider α = 1 and β = 1 in Theorem 3.8. Then, we obtain∣∣∣∣∣∣ 1

b− a

b∫
a

F (x) dx−F
(
a+ b

2

)∣∣∣∣∣∣
≤ (b− a)

2

48

[(
5 |F ′′ (b)|q + 3 |F ′′ (a)|q

8

) 1
q

+

(
5 |F ′′ (a)|q + 3 |F ′′ (b)|q

8

) 1
q

]
,

which is given in [26, Proposition 5].

4. Summary and concluding remarks

In this article, we established an equality for the case of convex differentiable
functions. By using this identity, we proved midpoint-type inequalities related
to the conformable fractional integrals. Furthermore, our results generalized
known results in the literature.

In future studies, the ideas and strategies for our results about midpoint-
type inequalities via conformable fractional integrals may open new avenues for
further research in this field. In addition, one can obtain likewise inequalities
of midpoint-type via conformable fractional integrals for twice-differentiable
convex functions with the help of the quantum calculus. Furthermore, one can
apply these resulting inequalities to different types of fractional integrals.
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