DOI QR코드

DOI QR Code

Strategy to increase distortional rigidity of crane box girder: Staggered truss diaphragm

  • Yangzhi Ren (College of Architecture and Civil Engineering, Beijing University of Technology) ;
  • Wenjing Guo (School of Stomatology, Southwest Medical University) ;
  • Xuechun Liu (College of Architecture and Civil Engineering, Beijing University of Technology) ;
  • Bin Wang (College of Engineering, Design and Physical Sciences, Brunel University) ;
  • Piyong Yu (College of Architecture and Civil Engineering, Beijing University of Technology) ;
  • Xiaowen Ji (College of Architecture and Civil Engineering, Beijing University of Technology)
  • Received : 2021.07.18
  • Accepted : 2023.04.04
  • Published : 2023.05.25

Abstract

This paper proposes a novel method for increasing the distortional frame rigidity of off-rail box girder bridges for cranes by reinforcing the diaphragm with staggered truss. The study starts by using the Matrix Displacement Method to determine the shear angle of the staggered truss diaphragm under two assumptions: hinge joint and rigid joint. To obtain closed-form solutions for the transversal and longitudinal deformations and warping stress of the crane girder, the study employs the Initial Parameter Method and considers the compatibility of shear deformation at joints between the diaphragms and the girder. The theoretical solutions are validated through finite element analysis, which also confirms that the hinge-joint assumption accurately represents the shear angle of the staggered truss diaphragm in girder distortion. Additionally, the study conducts extensive parameter analyses to examine the impact of staggered truss dimensions on distortional stress and deformation. Furthermore, the study compares the distortional warping stresses of crane girders reinforced with staggered truss diaphragms and those reinforced with perforated ones, emphasizing the importance of incorporating stagger truss in diaphragms. Overall, this paper provides a thorough evaluation of the proposed approach's effectiveness in enhancing the distortional frame rigidity of off-rail box girder bridges for cranes. The findings offer valuable insights into the design and reinforcement of diaphragms using staggered truss to enhance the structural performance of crane girders.

Keywords

Acknowledgement

This work is supported by National Natural Science Foundation of China (NSFC) (Grand number: 51978013), China Scholarship Council (Grand number: 201906545013), China Postdoctoral Science Foundation (Grand number: 2017M620789) and Beijing University of Technology (Grand number: 004000514118567, 004000514119060).

References

  1. ANSYS Inc. (2005), ANSYS Structural Analysis Guide, http://www.ansys.com.
  2. Boswell, L.F. and Li, Q. (1995), "Consideration of the relationships between torsion, distortion and warping of thinwalled beams", Thin Wall. Struct., 21, 147-161. https://doi.org/10.1016/ 0263-8231(94)00030-4.
  3. Chaudhari, S.C. and Deshmukh, S.K. (2020a), "Distortional analysis of laminated composite box girder: A review", Mater. Today Proc., 27(2), 1479-1486. https://doi.org/10.1016/j.matpr.2020.02.974.
  4. Chaudhari, S.C. and Deshmukh, S.K. (2020b), "Distortional response of doubly symmetric laminated composite box girder", Mater. Today Proc., 27(2), 1381-1388. https://doi.org/10.1016/j.matpr.2020.02.765.
  5. Choi, Y.J., Park, N.H. and Hong, S.S. (2003), "A consideration on intermediate diaphragm spacing of horizontally curved steel box girders", J. Korean Soc. Civ. Eng., 23, 345-353.
  6. Harashima, M. and Usugi, K. (1980), "Distortional analysis of random box girders considering the shear deformation", Foreign Bridge, 1, 1-29.
  7. Hsu, Y.T. and Schelling, D.R. (1995), "EBEF method for distortional analysis of steel box-girder bridges", J. Struct. Eng., 121, 557-566. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:8(982).
  8. Hsu, Y.T. and Fu, C.C. (2002), "Application of EBEF method for the distortional analysis of steel box girder bridge superstructures during construction", Adv. Struct. Eng., 5, 211-221. https://doi.org/10.1260/136943302320974581.
  9. Kolekova, Y., Kovac, M. and Balaz I. (2017), "influence lines of bridges with box-girder cross-section under torsion and distortion", Procedia Eng., 190, 603-610. https://doi.org/10.1016/j.proeng.2017.05.386.
  10. Lee, J.H., Lee, S.K. and Lim, J.H. (2015), "Spacing of intermediate diaphragms horizontally curved steel box girder bridges considering bending-distortional warping normal stress ratio", J. Korea Acad.-Ind. Coorp. Soc., 16, 6325-6332. https://doi.org/10.5762/KAIS.2015.16.9.6325.
  11. Lee, J.H., Lee, K.S., Choi, J.H and Kang, Y.J. (2020), "Intermediate diaphragm spacing for single-cell rectangular steel box girder bridges considering aspect-ratio", J. Constr. Steel Res., 168, 105877. https://doi.org/10.1016/j.jcsr.2019.105877.
  12. Li, Q. (1993), "Investigation of the warping functions of thin walled bars with closed cross section", J. Southw. Jiaotong Univ., 6, 1-6.
  13. Li, H.F. and Luo, Y.F. (2010), "Application of stiffness matrix of a beam element considering section distortion effect", J. Southeast Univ., 26, 431-435.
  14. Liu, Y., Yang, C.X. and Tan, Z.C. (2017), "Hybrid element-based virtual distortion method for finite element model updating of bridges with wide-box girders", Eng. Struct., 143, 558-570. https://doi.org/10.1016/j.engstruct.2017.04.030.
  15. Park, N.H., Choi, Y. and Yi, G. (2002), "Distortional analysis of steel box girders", Steel Struct., 2(1), 51-58. https://doi.org/10.12989/scs.2002.2.1.051
  16. Park, N.H., Lim, N. and Kang, Y. (2003), "A consideration on intermediate diaphragm spacing in steel box girder bridges with a doubly symmetric section", Eng. Struct., 25, 1665-1674. https://doi.org/10.1 016 /S0141-0296(03)00145-7. https://doi.org/10.1016/S0141-0296(03)00145-7
  17. Park, N.H., Yoon, K.Y. and Cho, S.K. (2004), "Effective distortional stiffness ratio and spacing of intermediate diaphragms in steel box girder bridges", Steel Struct., 4, 93-102.
  18. Park, N.H., Choi, Y. and Kang, Y. (2005a), "Spacing of intermediate diaphragms in horizontally curved steel box girder bridges", Finite Elem. Anal. Des., 41, 925-943. https://doi.org/10.1016/j.finel.2004.12.006.
  19. Park, N.H., Choi, S. and Kang, Y. (2005b), "Exact distortional behavior and practical distortional analysis of multicell box girders using an expanded method", Compos. Struct., 83, 1607-1626. https://doi.org/10.1016/j.compstruc.2005.01.003.
  20. Park, N.H., Kang, Y.J. and Kim, H.J. (2005c), "An independent distortional analysis method of thin-walled multicell box girders", Struct. Eng. Mech., 21(3), 275-293. https://doi.org/10.12989/sem.2005.21.3.275.
  21. Ren, Y.Z., Cheng, W.M., Wang, Y.Q., Chen, Q.R. and Wang, B. (2017a), "Distortional analysis of simply supported box girders with inner diaphragms considering shear deformation of diaphragms using initial parameter method", Eng. Struct., 145, 44-59. https://doi.org/10.1016/j.engstruct.2017.05.004.
  22. Ren, Y.Z., Cheng, W.M., Wang, Y.Q. and Wang, B. (2017b), "Analysis of the distortion of cantilever box girder with inner flexible diaphragms using initial parameter method", Thin Wall. Struct., 117, 140-154. https://doi.org/10.1016/j.tws.2017.04.010.
  23. Ren, Y.Z., Wang, B., Li, Y.Q. and Liu, X.C. (2019), "New research for the distortion of steel box girders with inner solid diaphragms", Adv. Struct. Eng., 22, 3026-3041. https://doi.org/10.1177/1369433219856754.
  24. Suetake, Y. and Hirashima, M. (1997), "Extended trigonometric series analysis of box girders with diaphragms", J. Eng. Mech., 123, 293-301. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:4(293).
  25. Wright, R.N., Abdel-Samad, S.R. and Robinson, A.R. (1968), "BEF analogy for analysis of box girders", J. Struct. Div., 94, 1719-1743. https://doi.org/10.1061/JSDEAG.0002013.
  26. Xu, X. and Qiang, S.Z. (2013a), "Research on distortion analysis theory of thin-walled box girder", Eng. Mech., 30, 192-201. https://doi.org/10.6052/j.issn.1000-4750.2012.07.0554.
  27. Xu, X., Ye, H.W. and Qiang, S.Z. (2013b), "Distortional analysis of thin-walled box girder taking account of shear deformation", Chin. J. Comput. Mech., 30, 860-866. https://doi.org/10.7511/jslx201306018.
  28. Ye, Y.S., Zhang, J. and Zhao, X.M. (2007), "Kalman filtering identification for displacement parameters of continuous curved box girder bridge based on novozhilov flexibility theory", China J. Highw. Transp., 20, 65-69. https://doi.org/10.1063/1.3137898.
  29. Zhang, J., Ye, J.S. and Zhao, X.M., (2007), "Dynamic Bayesian stochastic estimation to displacement parameters of continuous curved box with segregating slab", Chin. J. Appl. Mech., 24, 69-74.
  30. Zhang, Z.W., Wang, J.N. and Cheng, W.M. (2013), Crane Design Manual, Chin. Railway Pub. House.
  31. Zhao, Z.M. (1997), "The calculating analysis for multiple span continuous curved box girder by the finite strip method", J. Fuzhou Univ. (N. Sci.), 25, 90-94.
  32. Zhao, Z.M., Fang, Z.Z. and Guo, J.Q. (1993a), "Analysis of continuous box girders with diaphragms by finite strip method", Bridge Constr., 4, 35-53.
  33. Zhao, Z.M. (1993b), "Analysis of continuous curved box-girder bridge with flexible transverse diaphragms by finite strip method", Comput. Struct. Mech. Appl., 10, 473-484.
  34. Zhu, L., Su, R.K.L. and Li, M.J. (2021), "Finite beam element with 26 DOFs for curved composite box girders considering constrained torsion, distortion, shear lag and biaxial slip", Eng. Struct., 232, 111797. https://doi.org/10.1016/j.engstruct.2020.111797.