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Background: While efforts have been made to differentiate fall risk in older adults using 
wearable devices and clinical methodologies, technologies are still infancy. We applied a deci-
sion tree (DT) algorithm using inertial measurement unit (IMU) sensor data and clinical mea-
surements to generate high performance classification models of fall risk of older adults.

Objects: This study aims to develop a classification model of fall risk using IMU data and 
clinical measurements in older adults.

Methods: Twenty-six older adults were assessed and categorized into high and low fall risk 
groups. IMU sensor data were obtained while walking from each group, and features were 
extracted to be used for a DT algorithm with the Gini index (DT1) and the Entropy index (DT2), 
which generated classification models to differentiate high and low fall risk groups. Model’s 
performance was compared and presented with accuracy, sensitivity, and specificity.

Results: Accuracy, sensitivity and specificity were 77.8%, 80.0%, and 66.7%, respectively, for 
DT1; and 72.2%, 91.7%, and 33.3%, respectively, for DT2.

Conclusion: Our results suggest that the fall risk classification using IMU sensor data ob-
tained during gait has potentials to be developed for practical use. Different machine learning 
techniques involving larger data set should be warranted for future research and development.

INTRODUCTION

With the global increase in the elderly population, falls are 

a major health concern for older adults. Over 30% of com-

munity-dwelling older adults and approximately 60% of the 

residents in nursing and old peoples’ homes fall every year [1]. 

Furthermore, about one-quarter of injury-related deaths in 

older adults over 65 years and 34% of those over 85 years oc-

cur due to falls [2,3]. According to the Centers for Disease Con-

trol and Prevention (CDC), 2.8 million patients were treated for 

fall-related injuries in the emergency room in 2014, and about 

1 million of these patients were hospitalized [4].

Falls in older adults commonly occur during dynamic move-

ments (gait and weight shift) in their daily living activities. 

According to the video capture analysis of falls in long-term 

care, Robinovitch et al. [5] found that forward walking was the 

most common activity (24%) at the time of a fall. Overstall et 

al. [6,7] found that the increasing sway of gait in older adults 

correlated with a history of falls. Furthermore, individuals with 

impaired gait are 1.65 times more likely to experience a fall 

than individuals with no impairments [8]. Gait abnormalities 

(i.e., lower gait speed) also indicate possible sarcopenia, which 

causes serious problems in older adults [9-11].

Many studies utilize various fall risk assessment methods to 

assess older adults’ fall risk. Some research studies classify fall 

risk based on a history of falls [12,13]. However, it is a proxy 

measure for fall risk because a faller has a higher risk of falling 

again [12]. Some research studies utilize fall risk scores from 

various functional tests such as the Berg Balance Scale (BBS), 

Timed Up and Go (TUG), and Tinetti tests [14-16]. These stud-

ies have clinical use advantages, but these tests have some 

limitations regarding the diversity of their testing factors. Ge-

neric fall risk measurements like St Thomas’s risk assessment 

tool in falling elderly inpatients (STRATIFY) are also used for 
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assessing fall risk, but this tool also has limitations, including 

a low sensitivity to predict future falls [17-19]. However, the 

Physiological Profile Assessment (PPA) presents some advan-

tages in assessing fall risk [20]. The primary advantage for PPA 

is the diversity of testing factors including physiological factors 

like vision, proprioception, and lower limb strength. How-

ever, PPA is also limited, as it is not suitable for clinical use 

because of the testing time [21]. Short-form PPA (S-PPA) has 

been developed, which tests only five factors (the Melbourne 

Edge Test, proprioception test, knee extension muscle strength 

test, postural sway test, and reaction time test) to address this 

limitation. Although there is a significant correlation between 

clinical measurements and the PPA score, most studies have 

measured fall risk using the selected method [22]. Therefore, 

identifying clinical measurement scores in each fall risk group 

may help to comprehensively understand fall risk. Further-

more, Brodie et al. [23] found a significant correlation between 

PPA score and gait analysis features (total steps per day).

To analyze human movements, such as quantitative gait ab-

normality, three dimensional motion capture system camera 

is classified as the gold standard, but it has limitations: it is 

too expensive and impractical to analyze in clinical settings 

[24,25]. Various wearable devices, including accelerometers, 

gyroscopes, magnetometers, foot pressure sensors, inclinom-

eters, and goniometers, were utilized in previous studies to 

compensate for these limitations [26-29]. Specifically, inertial 

measurement unit (IMU) sensors have been used commonly in 

gait analysis instead of expensive and impractical motion cap-

ture systems [30]. Furthermore, IMU shows high accuracy for 

extracting features during gait compared to the gold standard 

(three dimensional motion analysis camera) [31,32].

In practice, most fall-related reports are collected through 

subjective data such as patient interviews and questionnaires 

[33]. Therefore, these quantitative data from wearable sensors 

can provide more accurate information about falls, which may 

help provide a more effective fall prevention strategy. From 

this perspective, many studies suggest various fall prevention 

strategies using machine learning algorithms and these quan-

titative data [12,34,35]. Aziz and Robinovitch [35] suggested 

that the accuracy of classification models of falls and non-

falls using waist-mounted tri-axial accelerometer data is up to 

96.0%. Santhiranayagam et al. [34] suggested that the accuracy 

of a support vector machine-based classification model that 

analyzes the gait of young and older adults using IMU is 92.1%. 

Drover et al. [36] suggested that the accuracy of faller classi-

fication models using a wearable sensor is up to 77.3%. How-

ever, to the best of our knowledge, there is no study classifying 

the fall risk assessed by S-PPA using IMU data and clinical 

measurements for gait. Therefore, this study aims to develop 

a classification model for the fall risk assessed by S-PPA using 

IMU data and clinical measurements in older adults. We hy-

pothesize that the accuracy of our classification model is up to 

80.0%.

MATERIALS AND METHODS

1. Subjects

This study had 26 older adult participants (3 males and 23 

females). Average age, weight, and height were 79.6 ± 6.2 

years, 57.8 ± 7.5 kg, and 155 ± 6.8 cm, respectively. Exclusion 

criteria included subjects who used gait assistance methods 

(walker, cane, etc.). Experimental protocols have been re-

viewed and approved by the Institutional Review Board at Yon-

sei University Mirae campus (IRB no. 1041849-202301-BM-

004-03), and all participants provided an informed consent 

form before the experiment.

2. Experimental Protocol

During the experiment, the investigator took clinical mea-

surements for each participant. In this experiment, we mea-

sured muscle mass, number of falls in the past year, fear of fall 

(ranging from 1 to 5, where 1 means the subject is not afraid 

to fall at all.), education level, drinking and smoking history, 

PPA, bilateral hand grip strength, BBS, TUG, five times sit to 

stand (5STS), and Fall Efficacy Scale-International (FES-I). After 

clinical measurements, subjects wore 10 IMU sensors (Xsens 

DOT; Xsens Technologies) to measure gait for 10 m at a sam-

pling rate of 60 Hz. The IMU sensors were placed on the head, 

sacrum, bilateral upper arm, forearm, thigh, and shin of each 

subject.

3. Input Features

1) Physiological Profile Assessment

S-PPA is the modified version of PPA, a common measure of 

fall risk, which includes five physiological factors. The follow-

ing test were performed to test these factors.
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(1) Melbourne Edge Test 

The Melbourne Edge Test was used in the study to evaluate 

the participants’ visual contrast sensitivity. The test involved 

identifying the directions of contrast edges of circular patches 

on a chart. The patches were presented at different angles, 

including horizontal, vertical, and diagonal. The participants 

were provided with a keycard that contained four possible 

directions of contrasting edges. The test recorded the correct 

identification of the lowest contrasting edge in decibels. The 

Melbourne Edge Test was found to have good reliability in 

measuring visual contrast sensitivity in older adults who live in 

the community [17,20].

(2) Proprioception test

The proprioception test was designed to evaluate partici-

pants’ sense of proprioception. Participants were instructed to 

sit in the S-PPA proprioception char with their eyes closed and 

align their great toes on either side of a vertical acrylic-plastic 

plate (60 × 60 × 1 cm). Any differences in the alignment of 

their great toes were measured and recorded in degrees. The 

test was found to have moderate test-retest reliability in older 

adults, with an intraclass correlation coefficient (ICC) of 0.50 

and a 95% confidence interval (CI) of 0.15–0.74 [17,20].

(3) Hand reaction time test

The hand reaction time test was used to assess response 

time. In this test, participants were instructed to press a re-

sponse switch on a modified computer mouse when a red 

light next to the switch was activated. The time taken to react 

was measured in milliseconds using a built-in timer. The test 

showed moderate test-retest reliability, with an ICC of 0.69 and 

a 95% CI of 0.45–0.84 [17,20].

(4) Knee extension muscle strength test

The knee extension strength test was used to evaluate the 

quadriceps muscle strength in the dominant leg. All subjects in 

our experiment were dominant on the right side. The partici-

pants were instructed to sit while a strap connected to a spring 

gauge was placed around their legs to measure the force ap-

plied during knee extension. The measurement was recorded 

in kilograms. This test demonstrated excellent test-retest reli-

ability with an ICC of 0.97 and 95% CI of 0.93–0.98 [17,20].

(5) Postural sway test

The postural sway test measured the displacement of the 

body and was conducted by tying a belt to the waist of each 

participant for 30 seconds. A rod connected to the belt was 

used to record body movement on graph paper in mm2, with 

a pen attached to the end of the rod. This test showed moder-

ate test-retest reliability, with an ICC of 0.68 and a 95% CI of 

0.45–0.82 [17,20].

Scores from the five tests were the input data for the S-PPA 

software program, and these scores were converted into indi-

vidual fall risk scores ranging from –2 to 4. Furthermore, the S-

PPA software indicated a normal range for each subject’s age; 

therefore, we inferred that the high fall risk group is out of the 

normal range group, while the low fall risk group is in the nor-

mal range group (Figure 1).

2) Berg Balance Scale

BBS was a measurement for assessing balance and fall risk 

in older adults. It consisted of 14 tasks ranging from 0 to 4. A 

maximum score of 56 indicated good balance and low fall risk. 

BBS was found to have excellent test-retest reliability (ICC = 

0.98) [37,38].

3) Timed Up and Go test

The TUG test was a simple and quick assessment of func-

tional mobility and fall risk. It measured the time required for 

a person to stand up from a chair, walk 3 m, turn around, walk 

back to the chair, and sit down again. The TUG test was found 
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Figure 1.Figure 1. Example data (red cross point) in each group. The white range 
in this figure is the average normal population fall-risk score for each 
age group. Subjects with S-PPA scores outside this white range were 
classified into the high fall-risk group. 
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to have excellent test-retest reliability (ICC = 0.99) [39].

4) Fall Efficacy Scale-International

FES-I was a self-report questionnaire used to assess an indi-

vidual’s fear of falling. It consisted of 16 items that measure the 

level of concern about falling during various activities, such as 

walking on uneven surfaces, climbing stairs, or getting in and 

out of the bathtub. FES-I was found to have excellent internal 

and test-retest reliability (Cronbach’s alpha = 0.96, ICC = 0.96) 

[40].

5) Hand grip strength

Handgrip strength was assessed using digital hand grip dyna-

mometer (PGF-1000; Ls Networks Co.). It was commonly used 

in older adult studies, especially to assess possible sarcopenia 

[9]. The participants were assessed for bilateral hand grip 

strength while standing with full elbow extension according to 

the recommendations of the Asian Working Group for Sarco-

penia (AWGS) 2019.

6) Five times sit to stand test

The 5STS test was used in assessing older adults’ possible 

sarcopenia. According to the AWGS 2019, over 12 seconds for 

5STS is treated as the cutoff for low physical performance [9].

7) IMU features during gait

To determine each gait cycle from the IMU data, we used the 

angular velocity in the Y-axis data from bilateral shins (Figure 

2) [31,41]. We extracted features, including the mean and vari-

ance of accelerations, linear and angular velocities, and mag-

netic field data, from the left-side mid-swing to the next mid-

swing during gait.

4. Data Analysis

To normalize each gait cycle, we resampled each data to 100 

data points. After resampling, the average value of all gait cy-

cle data obtained from each subject was used as input features 

for the classification model.

We used a decision tree (DT) algorithm, a supervised clas-

sifier based on the impurity index (i.e., Gini index [DT1], En-

tropy index [DT2]) for classification models. Input features in 

DT were clinical measurements score and IMU sensor data (PPA, 

bilateral handgrip strength, BBS, TUG, 5STS, FES-I, Fear of fall 

score, mean and variance of accelerations, linear and angular 

velocities, and magnetic field data during gait). DT selects the 

primary features that minimize the DT1. The main advantage 

of DT is that it is easier to interpret than other methods; there-

fore, it can be applied in various fields such as healthcare. 

Other methods might be more accurate but more difficult to 

understand and interpret than DT [42-44]. We used DT using 

both the DT1 and DT2 for developing classification models. 

Among our subjects, 8 subjects (1 male and 7 females) were 

included in the low fall-risk group and 18 subjects (2 males 

and 16 females) were included in the high fall-risk group. 

Therefore, we resampled the low fall-risk group data using the 

average of the low fall-risk group data and the same number 

for the high fall-risk group. Then, we randomly divided the 

datasets into equal sizes for training and testing sets. Subse-

quently, optimal hyperparameters for each DT were selected 

automatically. To assess classification model performance, the 

accuracy, sensitivity, and specificity were computed with the 

following equations:

Accuracy (%) =
True positive + True negative

 × 100
Positives + Negatives

Sensitivity (%) =
True positive

 × 100
True positive + False negative

Specificity (%) =
True negative

 × 100
True negative + False positive

All data analyses were conducted using MATLAB routines 

(R2022B; MathWorks Inc.).
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Figure 2.Figure 2. Definition method from angular velocity in Y-axis data using 
shin inertial measurement unit sensor data.
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RESULTS

The clinical measurements for each group are described in 

Table 1. One subject in the high fall-risk group drank alcohol, 

and one subject in each group smoked daily. In the low fall-

risk group, two were uneducated, two graduated from elemen-

tary school, one from middle school, two from high school, 

and one from university. In the high fall-risk group, seven were 

uneducated, five graduated from elementary school, four from 

middle school, and two from high school. Two subjects in the 

low fall risk group experienced falls in the last year, and seven 

subjects in the high-fall risk group experienced falls in the 

previous year. All subjects (nine subjects) experienced falls only 

once in the previous year.

The Classification model using the DT1 classified the high 

and low fall-risk groups by mean of accelerations in the Y-axis 

data from the right shin IMU sensor (Figure 3). Accuracy, sen-

sitivity, and specificity of DT1 were 77.8%, 80.0%, and 66.7%, 

respectively (Table 2).

The classification model using the DT2 classified the high- 

and low fall risk groups by mean of accelerations in the X-axis 

data from the left shin IMU sensor (Figure 4). Accuracy, sen-

sitivity, and specificity of DT2 were 72.2%, 91.7%, and 33.3%, 

respectively (Table 2).

DISCUSSION

This study aimed to develop classification models for fall risk 

assessed by the S-PPA using IMU data for gait in older adults. 

Although the accuracy of our classification models was under 

80.0%, which is lower than our hypothesis, we suggest the 

possibility of developing classification models of fall risk using 

IMU sensors. Our classification models showed over 70.0% ac-

curacy despite the small dataset (26 subjects) used for machine 

learning. We suggest that the performance of these classifica-

tion models can be improved in the following ways.

First, developing classification models based on wider datas-

ets may help improve the performance. Among 26 participants 

in this study, most were female participants (23 participants) 

and high fall-risk group subjects. Although falls and fall-related 

injuries are more common in women [45], matching sex ratios 

might be more helpful in improving the performance of the 

classification models. Therefore, future studies with more sex-

appropriate number of subjects for each group might be help-

ful in improving the performance of the classification models. 

Moreover, our sampling rate (60 Hz) for the IMU sensors might 

not have been sufficient for our purposes. Previous studies 

utilized IMU sensors over 100 Hz to develop fall prevention 

strategies (i.e., fall detection systems) and showed over 95.0% 

Mean_Acc_Y_8 1.10996 Mean_Acc_Y_8 1.10996

DT1

High fall risk Low fall risk

Figure 3.Figure 3. Figure of DT1. Mean_Acc_Y_8, mean of accelerations in the Y-
axis data from the right shin inertial measurement unit sensor; DT1, Gini 
index.

Mean_Acc_X_6 9.81813 Mean_Acc_X_6 9.81813

DT2

High fall risk Low fall risk

Figure 4.Figure 4. Figure of DT2. Mean_Acc_X_6, mean of accelerations in X-axis 
data from the left shin inertial measurement unit sensor; DT2, Entropy 
index.

Table 1.Table 1. Clinical measurements of each group

Variable High fall risk Low fall risk

Height (cm) 156.1 ± 7.3 152.3 ± 4.6
Weight (kg) 58.4 ± 7.2 56.7 ± 8.0
Age (y) 79.1 ± 5.1 80.9 ± 8.1
S-PPA 4.2 ± 1.7 2.6 ± 1.9
Muscle mass (kg) 21.0 ± 3.2 19.5 ± 2.4
Left hand grip strength (kg) 19.2 ± 4.1 20.5 ± 4.2
Right hand grip strength (kg) 19.5 ± 6.0 21.2 ± 4.9
BBS 50.3 ± 4.1 51.0 ± 3.8
TUG (s) 13.1 ± 3.7 10.8 ± 2.6
5STS (s) 10.6 ± 3.3 11.4 ± 2.6
FES-I 23.3 ± 9.7 20.8 ± 3.9
Fear of fall 2.4 ± 1.3 2.9 ± 1.6

Values are presented as mean ± standard deviation. S-PPA, Short-form 
Physiological Profile Assessment; BBS, Berg Balance Scale; TUG, Timed 
Up and Go; 5STS, five times sit to stand; FES-I, Fall Efficacy Scale-Inter-
national.

Table 2.Table 2. Classification performance of decision tree using DT1 and DT2

Variable DT1 DT2

Accuracy (%) 77.8 72.2
Sensitivity (%) 80.0 91.7
Specificity (%) 66.7 33.3

DT1, Gini index; DT2, Entropy index.
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accuracy [46]. Therefore, a higher sampling rate for IMU sen-

sors may help improve the classification model performance.

Second, although we used impurity criteria in two ways, we 

used only a DT classifier because DTs have the advantage of 

being easy to interpret as they present the factors and cutoff 

values of classification models. Previous studies used various 

machine learning algorithms to develop classification models 

[12,34,35]. Aziz et al. [47,48] suggested that a support vector 

machine (SVM) has superior performance in classifying hu-

man movements, which might help improve the performance. 

Furthermore, Lim and Choi [49] suggested that SVM showed 

higher accuracy than DT for 2 impurity criteria. Therefore, 

future studies, including various machine learning algorithms 

(i.e., Naïve Bayes, K-nearest neighbor, Random Forest, Convo-

lutional Neural Network), might help find optimal algorithms 

for fall-risk classification models using IMU sensors.

CONCLUSIONS

In conclusion, we developed classification models for fall 

risk using S-PPA and IMU sensors. Our classification model 

achieved less than 80.0% accuracy, but if future studies with 

modified limitations show higher accuracy, it could be helpful 

in improving effective fall prevention strategies.
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