DOI QR코드

DOI QR Code

Immunogenic cell death in cancer immunotherapy

  • Minji Choi (Department of Biomedical Science and Engineering, Graduate School, Inha University) ;
  • Jisoo Shin (Department of Biomedical Science and Engineering, Graduate School, Inha University) ;
  • Chae-Eun Lee (Department of Biomedical Science and Engineering, Graduate School, Inha University) ;
  • Joo-Yoon Chung (Department of Biomedical Science and Engineering, Graduate School, Inha University) ;
  • Minji Kim (Department of Biomedical Science and Engineering, Graduate School, Inha University) ;
  • Xiuwen Yan (Affiliated Cancer Institute & Hospital and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University) ;
  • Wen-Hao Yang (Graduate Institute of Biomedical Sciences, China Medical University) ;
  • Jong-Ho Cha (Department of Biomedical Science and Engineering, Graduate School, Inha University)
  • 투고 : 2023.02.15
  • 심사 : 2023.03.09
  • 발행 : 2023.05.31

초록

Cancer immunotherapy has been acknowledged as a new paradigm for cancer treatment, with notable therapeutic effects on certain cancer types. Despite their significant potential, clinical studies over the past decade have revealed that cancer immunotherapy has low response rates in the majority of solid tumors. One of the key causes for poor responses is known to be the relatively low immunogenicity of solid tumors. Because most solid tumors are immune desert 'cold tumors' with antitumor immunity blocked from the onset of innate immunity, combination therapies that combine validated T-based therapies with approaches that can increase tumor-immunogenicity are being considered as relevant therapeutic options. This review paper focuses on immunogenic cell death (ICD) as a way of enhancing immunogenicity in tumor tissues. We will thoroughly review how ICDs such as necroptosis, pyroptosis, and ferroptosis can improve anti-tumor immunity and outline clinical trials targeting ICD. Finally, we will discuss the potential of ICD inducers as an adjuvant for cancer immunotherapy.

키워드

과제정보

This work was supported by INHA UNIVERSITY Research Grant.

참고문헌

  1. Swann JB and Smyth MJ (2007) Immune surveillance of tumors. J Clin Invest 117, 1137-1146  https://doi.org/10.1172/JCI31405
  2. Verma NK, Wong BHS, Poh ZS et al (2022) Obstacles for T-lymphocytes in the tumour microenvironment: therapeutic challenges, advances and opportunities beyond immune checkpoint. EBioMedicine 83, 104216 
  3. Wang M, Wang S, Desai J, Trapani JA and Neeson PJ (2020) Therapeutic strategies to remodel immunologically cold tumors. Clin Transl Immunology 9, e1226 
  4. Duan Q, Zhang H, Zheng J and Zhang L (2020) Turning cold into hot: firing up the tumor microenvironment. Trends Cancer 6, 605-618  https://doi.org/10.1016/j.trecan.2020.02.022
  5. Zhang J, Huang D, Saw PE and Song E (2022) Turning cold tumors hot: from molecular mechanisms to clinical applications. Trends Immunol 43, 523-545  https://doi.org/10.1016/j.it.2022.04.010
  6. Kaufman HL, Kohlhapp FJ and Zloza A (2015) Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 14, 642-662  https://doi.org/10.1038/nrd4663
  7. Li K, Zhang Z, Mei Y et al (2022) Targeting the innate immune system with nanoparticles for cancer immunotherapy. J Mater Chem B 10, 1709-1733  https://doi.org/10.1039/D1TB02818A
  8. Bazak R, Houri M, El Achy S, Kamel S and Refaat T (2015) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141, 769-784  https://doi.org/10.1007/s00432-014-1767-3
  9. Rosenbaum SR, Wilski NA and Aplin AE (2021) Fueling the fire: inflammatory forms of cell death and implications for cancer immunotherapy. Cancer Discov 11, 266-281  https://doi.org/10.1158/2159-8290.CD-20-0805
  10. Liu M, Wang L, Xia X et al (2022) Regulated lytic cell death in breast cancer. Cell Biol Int 46, 12-33  https://doi.org/10.1002/cbin.11705
  11. Chen GY and Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10, 826-837  https://doi.org/10.1038/nri2873
  12. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P and Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12, 860-875  https://doi.org/10.1038/nrc3380
  13. Ahmed A and Tait SWG (2020) Targeting immunogenic cell death in cancer. Mol Oncol 14, 2994-3006  https://doi.org/10.1002/1878-0261.12851
  14. Serrano-Del Valle A, Anel A, Naval J and Marzo I (2019) Immunogenic cell death and immunotherapy of multiple myeloma. Front Cell Dev Biol 7, 50 
  15. Legrand AJ, Konstantinou M, Goode EF and Meier P (2019) The diversification of cell death and immunity: memento mori. Mol Cell 76, 232-242  https://doi.org/10.1016/j.molcel.2019.09.006
  16. Bustin M (1999) Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol 19, 5237-5246  https://doi.org/10.1128/MCB.19.8.5237
  17. Lui G, Wong CK, Ip M et al (2016) HMGB1/RAGE signaling and pro-inflammatory cytokine responses in non-HIV adults with active pulmonary tuberculosis. PLoS One 11, e0159132 
  18. Li L and Lu YQ (2020) The regulatory role of high-mobility group protein 1 in sepsis-related immunity. Front Immunol 11, 601815 
  19. Ge Y, Huang M and Yao YM (2021) The effect and regulatory mechanism of high mobility group box-1 protein on immune cells in inflammatory diseases. Cells 10, 1044 
  20. Klune JR, Dhupar R, Cardinal J, Billiar TR and Tsung A (2008) HMGB1: endogenous danger signaling. Mol Med 14, 476-484  https://doi.org/10.2119/2008-00034.Klune
  21. Pandya UM, Egbuta C, Abdullah Norman TM et al (2019) The biophysical interaction of the danger-associated molecular pattern (DAMP) calreticulin with the pattern-associated molecular pattern (PAMP) lipopolysaccharide. Int J Mol Sci 20, 408 
  22. Obeid M, Tesniere A, Panaretakis T et al (2007) Ecto-calreticulin in immunogenic chemotherapy. Immunol Rev 220, 22-34  https://doi.org/10.1111/j.1600-065X.2007.00567.x
  23. Wemeau M, Kepp O, Tesniere A et al (2010) Calreticulin exposure on malignant blasts predicts a cellular anticancer immune response in patients with acute myeloid leukemia. Cell Death Dis 1, e104 
  24. Obeid M, Tesniere A, Ghiringhelli F et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13, 54-61  https://doi.org/10.1038/nm1523
  25. Zunino B, Rubio-Patino C, Villa E et al (2016) Hyperthermic intraperitoneal chemotherapy leads to an anticancer immune response via exposure of cell surface heat shock protein 90. Oncogene 35, 261-268  https://doi.org/10.1038/onc.2015.82
  26. Murshid A, Gong J and Calderwood SK (2012) The role of heat shock proteins in antigen cross presentation. Front Immunol 3, 63 
  27. van Eden W, van der Zee R and Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5, 318-330  https://doi.org/10.1038/nri1593
  28. Kovalchin JT, Mendonca C, Wagh MS, Wang R and Chandawarkar RY (2006) In vivo treatment of mice with heat shock protein, gp 96, improves survival of skin grafts with minor and major antigenic disparity. Transpl Immunol 15, 179-185  https://doi.org/10.1016/j.trim.2005.07.003
  29. Amores-Iniesta J, Barbera-Cremades M, Martinez CM et al (2017) Extracellular ATP Activates the NLRP3 inflammasome and is an early danger signal of skin allograft rejection. Cell Rep 21, 3414-3426  https://doi.org/10.1016/j.celrep.2017.11.079
  30. Venereau E, Ceriotti C and Bianchi ME (2015) DAMPs from cell death to new life. Front Immunol 6, 422 
  31. Ghiringhelli F, Apetoh L, Tesniere A et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15, 1170-1178  https://doi.org/10.1038/nm.2028
  32. Kepp O, Bezu L, Yamazaki T et al (2021) ATP and cancer immunosurveillance. EMBO J 40, e108130 
  33. Nyboe Andersen N, Pasternak B, Friis-Moller N, Andersson M and Jess T (2015) Association between tumour necrosis factor-alpha inhibitors and risk of serious infections in people with inflammatory bowel disease: nationwide Danish cohort study. BMJ 350, h2809 
  34. Parameswaran N and Patial S (2010) Tumor necrosis factor-alpha signaling in macrophages. Crit Rev Eukaryot Gene Expr 20, 87-103  https://doi.org/10.1615/CritRevEukarGeneExpr.v20.i2.10
  35. Cervera-Carrascon V, Siurala M, Santos JM et al (2018) TNFa and IL-2 armed adenoviruses enable complete responses by anti-PD-1 checkpoint blockade. Oncoimmunology 7, e1412902 
  36. Jiang C, Niu J, Li M, Teng Y, Wang H and Zhang Y (2014) Tumor vasculature-targeted recombinant mutated human TNF-alpha enhanced the antitumor activity of doxorubicin by increasing tumor vessel permeability in mouse xenograft models. PLoS One 9, e87036 
  37. Egberts JH, Cloosters V, Noack A et al (2008) Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res 68, 1443-1450  https://doi.org/10.1158/0008-5472.CAN-07-5704
  38. Cruceriu D, Baldasici O, Balacescu O and Berindan-Neagoe I (2020) The dual role of tumor necrosis factor-alpha (TNF-alpha) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr) 43, 1-18  https://doi.org/10.1007/s13402-019-00489-1
  39. Zhang W, Borcherding N and Kolb R (2020) IL-1 signaling in tumor microenvironment. Adv Exp Med Biol 1240, 1-23  https://doi.org/10.1007/978-3-030-38315-2_1
  40. Chen L, Zheng L, Chen P and Liang G (2020) Myeloid differentiation primary response protein 88 (MyD88): the central hub of TLR/IL-1R signaling. J Med Chem 63, 13316-13329  https://doi.org/10.1021/acs.jmedchem.0c00884
  41. Nakamura K and Smyth MJ (2017) Targeting cancer-related inflammation in the era of immunotherapy. Immunol Cell Biol 95, 325-332  https://doi.org/10.1038/icb.2016.126
  42. Chen CJ, Kono H, Golenbock D, Reed G, Akira S and Rock KL (2007) Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13, 851-856  https://doi.org/10.1038/nm1603
  43. Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5, 375-386  https://doi.org/10.1038/nri1604
  44. Zhu Y, An X, Zhang X, Qiao Y, Zheng T and Li X (2019) STING: a master regulator in the cancer-immunity cycle. Mol Cancer 18, 152 
  45. Vacchelli E, Sistigu A, Yamazaki T, Vitale I, Zitvogel L and Kroemer G (2015) Autocrine signaling of type 1 interferons in successful anticancer chemotherapy. Oncoimmunology 4, e988042 
  46. Zhang S, Kohli K, Black RG et al (2019) Systemic interferon-gamma increases MHC class I expression and T-cell infiltration in cold tumors: results of a phase 0 clinical trial. Cancer Immunol Res 7, 1237-1243  https://doi.org/10.1158/2326-6066.CIR-18-0940
  47. Dovhey SE, Ghosh NS and Wright KL (2000) Loss of interferon-gamma inducibility of TAP1 and LMP2 in a renal cell carcinoma cell line. Cancer Res 60, 5789-5796 
  48. Gangaplara A, Martens C, Dahlstrom E et al (2018) Type I interferon signaling attenuates regulatory T cell function in viral infection and in the tumor microenvironment. PLoS Pathog 14, e1006985 
  49. Coughlin CM, Salhany KE, Gee MS et al (1998) Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 9, 25-34  https://doi.org/10.1016/S1074-7613(00)80585-3
  50. Sistigu A, Yamazaki T, Vacchelli E et al (2014) Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 20, 1301-1309  https://doi.org/10.1038/nm.3708
  51. Karsch-Bluman A, Feiglin A, Arbib E et al (2019) Tissue necrosis and its role in cancer progression. Oncogene 38, 1920-1935  https://doi.org/10.1038/s41388-018-0555-y
  52. Koren E and Fuchs Y (2021) Modes of Regulated cell death in cancermodes of regulated cell death in cancer. Cancer Discov 11, 245-265  https://doi.org/10.1158/2159-8290.CD-20-0789
  53. Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25, 486-541  https://doi.org/10.1038/s41418-017-0012-4
  54. Cai Z, Jitkaew S, Zhao J et al (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16, 55-65  https://doi.org/10.1038/ncb2883
  55. Kaiser WJ, Sridharan H, Huang C et al (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288, 31268-31279  https://doi.org/10.1074/jbc.M113.462341
  56. Zhang Y, Chen X, Gueydan C and Han J (2018) Plasma membrane changes during programmed cell deaths. Cell Res 28, 9-21  https://doi.org/10.1038/cr.2017.133
  57. Gunther C, Martini E, Wittkopf N et al (2011) Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477, 335-339  https://doi.org/10.1038/nature10400
  58. Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H and Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15, 135-147  https://doi.org/10.1038/nrm3737
  59. Murphy JM, Czabotar PE, Hildebrand JM et al (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443-453  https://doi.org/10.1016/j.immuni.2013.06.018
  60. Aaes TL, Kaczmarek A, Delvaeye T et al (2016) Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity. Cell Rep 15, 274-287  https://doi.org/10.1016/j.celrep.2016.03.037
  61. Park HH, Kim HR, Park SY et al (2021) RIPK3 activation induces TRIM28 derepression in cancer cells and enhances the anti-tumor microenvironment. Mol Cancer 20, 107 
  62. Nicole L, Sanavia T, Cappellesso R et al (2022) Necroptosis-driving genes RIPK1, RIPK3 and MLKL-p are associated with intratumoral CD3+ and CD8+ T cell density and predict prognosis in hepatocellular carcinoma. J Immunother Cancer 10, e004031 
  63. Koo GB, Morgan MJ, Lee DG et al (2015) Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res 25, 707-725  https://doi.org/10.1038/cr.2015.56
  64. Snyder AG, Hubbard NW, Messmer MN et al (2019) Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Sci immunol 4, eaaw2004 
  65. Werthmoller N, Frey B, Wunderlich R, Fietkau R and Gaipl US (2015) Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T-cell-dependent manner. Cell Death Dis 6, e1761 
  66. Jiang X, Stockwell BR and Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22, 266-282  https://doi.org/10.1038/s41580-020-00324-8
  67. Lewerenz J, Klein M and Methner A (2006) Cooperative action of glutamate transporters and cystine/glutamate antiporter system Xc-protects from oxidative glutamate toxicity. J Neurochem 98, 916-925  https://doi.org/10.1111/j.1471-4159.2006.03921.x
  68. Brigelius-Flohe R and Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830, 3289-3303  https://doi.org/10.1016/j.bbagen.2012.11.020
  69. Feng H and Stockwell BR (2018) Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol 16, e2006203 
  70. Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072  https://doi.org/10.1016/j.cell.2012.03.042
  71. Louandre C, Ezzoukhry Z, Godin C et al (2013) Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer 133, 1732-1742  https://doi.org/10.1002/ijc.28159
  72. Yang WS, SriRamaratnam R, Welsch ME et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317-331  https://doi.org/10.1016/j.cell.2013.12.010
  73. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A 113, E4966-E4975  https://doi.org/10.1073/pnas.1603244113
  74. Gaschler MM, Andia AA, Liu H et al (2018) FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14, 507-515  https://doi.org/10.1038/s41589-018-0031-6
  75. Manz DH, Blanchette NL, Paul BT, Torti FM and Torti SV (2016) Iron and cancer: recent insights. Ann N Y Acad Sci 1368, 149-161  https://doi.org/10.1111/nyas.13008
  76. Whitnall M, Howard J, Ponka P and Richardson DR (2006) A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proc Natl Acad Sci U S A 103, 14901-14906  https://doi.org/10.1073/pnas.0604979103
  77. Chen SJ, Kuo CC, Pan HY, Tsou TC, Yeh SC and Chang JY (2016) Desferal regulates hCtr1 and transferrin receptor expression through Sp1 and exhibits synergistic cytotoxicity with platinum drugs in oxaliplatin-resistant human cervical cancer cells in vitro and in vivo. Oncotarget 7, 49310-49321  https://doi.org/10.18632/oncotarget.10336
  78. Wang W, Green M, Choi JE et al (2019) CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270-274  https://doi.org/10.1038/s41586-019-1170-y
  79. Bordini J, Morisi F, Elia AR et al (2020) Iron induces cell death and strengthens the efficacy of antiandrogen therapy in prostate cancer models. Clin Cancer Res 26, 6387-6398  https://doi.org/10.1158/1078-0432.CCR-20-3182
  80. Zou Y, Palte MJ, Deik AA et al (2019) A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun 10, 1617 
  81. Gout P, Buckley A, Simms C and Bruchovsky N (2001) Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the xc- cystine transporter: a new action for an old drug. Leukemia 15, 1633-1640  https://doi.org/10.1038/sj.leu.2402238
  82. Yu Y, Xie Y, Cao L et al (2015) The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol Cell Oncol 2, e1054549 
  83. Hassannia B, Vandenabeele P and Berghe TV (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35, 830-849  https://doi.org/10.1016/j.ccell.2019.04.002
  84. Wen Q, Liu J, Kang R, Zhou B and Tang D (2019) The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun 510, 278-283  https://doi.org/10.1016/j.bbrc.2019.01.090
  85. Ye F, Chai W, Xie M et al (2019) HMGB1 regulates erastin-induced ferroptosis via RAS-JNK/p38 signaling in HL-60/NRAS(Q61L) cells. Am J Cancer Res 9, 730-739  https://doi.org/10.1186/s13046-019-1328-3
  86. Luo X, Gong HB, Gao HY et al (2021) Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ 28, 1971-1989  https://doi.org/10.1038/s41418-020-00719-2
  87. Raskov H, Orhan A, Christensen JP and Gogenur I (2021) Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer 124, 359-367  https://doi.org/10.1038/s41416-020-01048-4
  88. Efimova I, Catanzaro E, Van der Meeren L et al (2020) Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer 8, e001369 
  89. Song J, Liu T, Yin Y et al (2021) The deubiquitinase OTUD1 enhances iron transport and potentiates host antitumor immunity. EMBO Rep 22, e51162 
  90. Jiang Z, Lim S-O, Yan M et al (2021) TYRO3 induces anti-PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis. J Clin Invest 131, e139434 
  91. Wang W, Green M, Choi JE et al (2019) CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270-274  https://doi.org/10.1038/s41586-019-1170-y
  92. Lang X, Green MD, Wang W et al (2019) Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11 ferroptosis connects radiotherapy and immunotherapy. Cancer Discov 9, 1673-1685  https://doi.org/10.1158/2159-8290.CD-19-0338
  93. Wang H, Cheng Y, Mao C et al (2021) Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol Ther 29, 2185-2208  https://doi.org/10.1016/j.ymthe.2021.03.022
  94. Aglietti RA and Dueber EC (2017) Recent Insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions. Trends Immunol 38, 261-271  https://doi.org/10.1016/j.it.2017.01.003
  95. Erkes DA, Cai W, Sanchez IM et al (2020) Mutant BRAF and MEK inhibitors regulate the tumor immune microenvironment via pyroptosis. Cancer Discov 10, 254-269  https://doi.org/10.1158/2159-8290.CD-19-0672
  96. Yang D, He Y, Munoz-Planillo R, Liu Q and Nunez G (2015) Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity 43, 923-932  https://doi.org/10.1016/j.immuni.2015.10.009
  97. Fink SL and Cookson BT (2006) Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8, 1812-1825  https://doi.org/10.1111/j.1462-5822.2006.00751.x
  98. Yu P, Zhang X, Liu N, Tang L, Peng C and Chen X (2021) Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 6, 1-21  https://doi.org/10.1038/s41392-020-00451-w
  99. Platnich JM and Muruve DA (2019) NOD-like receptors and inflammasomes: a review of their canonical and non-canonical signaling pathways. Arch Biochem Biophys 670, 4-14  https://doi.org/10.1016/j.abb.2019.02.008
  100. Shi J, Zhao Y, Wang Y et al (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187-192  https://doi.org/10.1038/nature13683
  101. Hornung V, Ablasser A, Charrel-Dennis M et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514-518  https://doi.org/10.1038/nature07725
  102. Chae JJ, Wood G, Masters SL et al (2006) The B30. 2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. Proc Natl Acad Sci U S A 103, 9982-9987  https://doi.org/10.1073/pnas.0602081103
  103. Lu A, Magupalli Venkat G, Ruan J et al (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193-1206  https://doi.org/10.1016/j.cell.2014.02.008
  104. Liu X, Zhang Z, Ruan J et al (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153-158  https://doi.org/10.1038/nature18629
  105. Kayagaki N, Stowe IB, Lee BL et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666-671  https://doi.org/10.1038/nature15541
  106. Shi J, Zhao Y, Wang K et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660-665  https://doi.org/10.1038/nature15514
  107. Wang Y, Gao W, Shi X et al (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99-103  https://doi.org/10.1038/nature22393
  108. Ding J, Wang K, Liu W et al (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111-116  https://doi.org/10.1038/nature18590
  109. Jiang M, Qi L, Li L and Li Y (2020) The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov 6, 1-11  https://doi.org/10.1038/s41420-020-00349-0
  110. Aizawa E, Karasawa T, Watanabe S et al (2020) GSDME-dependent incomplete pyroptosis permits selective IL-1α release under caspase-1 inhibition. iScience 23, 101070 
  111. Zhang Z, Zhang Y, Xia S et al (2020) Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579, 415-420  https://doi.org/10.1038/s41586-020-2071-9
  112. Zhou Z, He H, Wang K et al (2020) Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 368, eaaz7548 
  113. Wang Q, Wang Y, Ding J et al (2020) A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 579, 421-426  https://doi.org/10.1038/s41586-020-2079-1
  114. Li S, Chen P, Cheng B et al (2022) Pyroptosis predicts immunotherapy outcomes across multiple cancer types. Clin Immunol 245, 109163 
  115. Pauken KE and Wherry EJ (2015) Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36, 265-276  https://doi.org/10.1016/j.it.2015.02.008
  116. Lu H, Dietsch GN, Matthews MA et al (2012) VTX-2337 is a novel TLR8 agonist that activates NK cells and augments ADCC. Clin Cancer Res 18, 499-509  https://doi.org/10.1158/1078-0432.CCR-11-1625
  117. Dietsch GN, Lu H, Yang Y et al (2016) Coordinated activation of toll-like receptor8 (TLR8) and NLRP3 by the TLR8 agonist, VTX-2337, ignites tumoricidal natural killer cell activity. PLoS One 11, e0148764 
  118. Monk BJ, Brady MF, Aghajanian C et al (2017) A phase 2, randomized, double-blind, placebo- controlled study of chemo-immunotherapy combination using motolimod with pegylated liposomal doxorubicin in recurrent or persistent ovarian cancer: a gynecologic oncology group partners study. Ann Oncol 28, 996-1004  https://doi.org/10.1093/annonc/mdx049
  119. Gabrilovich DI and Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9, 162-174  https://doi.org/10.1038/nri2506
  120. Coward J, Kulbe H, Chakravarty P et al (2011) Interleukin-6 as a therapeutic target in human ovarian cancer. Clin Cancer Res 17, 6083-6096  https://doi.org/10.1158/1078-0432.CCR-11-0945
  121. Dijkgraaf EM, Santegoets SJ, Reyners AK et al (2015) A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-alpha2b in patients with recurrent epithelial ovarian cancer. Ann Oncol 26, 2141-2149  https://doi.org/10.1093/annonc/mdv309
  122. Birmpilis AI, Paschalis A, Mourkakis A et al (2022) Immunogenic cell death, damps and prothymosin alpha as a putative anticancer immune response biomarker. Cells 11, 1415