DOI QR코드

DOI QR Code

Cyclic behavior of self-centering braces utilizing energy absorbing steel plate clusters

  • Jiawang Liu (Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology) ;
  • Canxing Qiu (Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology)
  • Received : 2021.02.24
  • Accepted : 2023.05.11
  • Published : 2023.05.25

Abstract

This paper proposed a new self-centering brace (SCB), which consists of four post-tensioned (PT) high strength steel strands and energy absorbing steel plate (EASP) clusters. First, analytical equations were derived to describe the working principle of the SCB. Then, to investigate the hysteretic performance of the SCB, four full-size specimens were manufactured and subjected to the same cyclic loading protocol. One additional specimen using only EASP clusters was also tested to highlight the contribution of PT strands. The test parameters varied in the testing process included the thickness of the EASP and the number of EASP in each cluster. Testing results shown that the SCB exhibited nearly flag-shape hysteresis up to expectation, including excellent recentering capability and satisfactory energy dissipating capacity. For all the specimens, the ratio of the recovered deformation is in the range of 89.6% to 92.1%, and the ratio of the height of the hysteresis loop to the yielding force is in the range of 0.47 to 0.77. Finally, in order to further understand the mechanism of the SCB and provide additional information to the testing results, the high-fidelity finite element (FE) models were established and the numerical results were compared against the experimental data. Good agreement between the experimental, numerical, and analytical results was observed, and the maximum difference is less than 12%. Parametric analysis was also carried out based on the validated FE model to evaluate the effect of some key parameters on the cyclic behavior of the SCB.

Keywords

Acknowledgement

This research was supported by the National Natural Science Foundation of China (No.: 52178267). However, any opinions, findings, conclusions, and recommendations presented in this paper are those of the authors and do not necessarily reflect the views of the sponsors. Finally, yet importantly, the authors wish to thank the anonymous reviewers for their careful evaluations and insightful comments that helped improve the paper.

References

  1. ABAQUS (2014), Analysis User's Manual, V6.14, Dassault Systems Simulia Corp., Providence, USA
  2. Azandariani, M.G., Abdolmaleki, H. and Azandariani, A.G. (2020), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin-Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751.
  3. Azandariani, M.G., Kafi, M.A. and Gholhaki, M. (2021a), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844.
  4. Azandariani, M.G., Gholhaki, M., Kafi, M.A., Zirakian, T., Khan, A., Abdolmaleki, H. and Shojaeifar, H. (2021b), "Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)", Steel Compos. Struct., 39(1), 109-123. https://doi.org/10.12989/scs.2021.39.1.109.
  5. Azandariani, M.G. and Gholami, M. (2022) "Seismic fragility investigation of hybrid structures BRBF with eccentric-configuration and self-centering frame", J. Constr. Steel. Res., 196, 107300. https://doi.org/10.1016/j.jcsr.2022.107300.
  6. Azandariani, M.G., Gholhaki, M., Kafi, M.A. and Azandariani, A.G. (2022a) "Assessment of cyclic behavior and performance of hybrid linked-column steel plate shear wall system", J. Build. Eng., 58, 104963. https://doi.org/10.1016/j.jobe.2022.104963.
  7. Azandariani, A.G., Gholhaki, M. and Azandariani, M.G. (2022b) "Assessment of damage index and seismic performance of steel plate shear wall (SPSW) system", J. Constr. Steel Res., 191, 107157. https://doi.org/10.1016/j.jcsr.2022.107157.
  8. Black, C.J., Makris, N. and Aiken, I.D. (2004), "Component testing, seismic evaluation and characterization of buckling-restrained braces", J. Struct. Eng., 130(6), 880-894. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(880).
  9. Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O'Rourke, T.D., Reinhorn, A.M., Shinozuka, M., Tierney, K., Wallace, W.A. and Winterfeldt, D.V. (2003), "A framework to quantitatively assess and enhance the seismic resilience of communities", Earthq. Spectra., 19(4), 733-752. https://doi.org/10.1193/1.1623497.
  10. Chen, J.B., Fang, C., Wang, W. and Liu, Y.Q. (2020), "Variable-friction self-centering energy-dissipation braces (VF-SCEDBs) with NiTi SMA cables for seismic resilience", J. Constr. Steel Res., 175, 106318. https://doi.org/10.1016/j.jcsr.2020.106318.
  11. Chou, C.C. and Lai, Y.J. (2009), "Post-tensioned self-centering moment connections with beam bottom flange energy dissipators", J. Constr. Steel Res., 65(10-11), 1931-1941. https://doi.org/10.1016/j.jcsr.2009.06.002.
  12. Chou, C.C., Hsiao, C.H., Chen, Z.B., Chung, P.T. and Pham, D.G. (2019), "Seismic loading tests of full-scale two-story steel building frames with self-centering braces and buckling-restrained braces", Thin-Wall. Struct., 140, 168-181. https://doi.org/10.1016/j.tws.2019.03.024.
  13. Christopoulos, C., Filiatrault, A., Uang, C.M. and Folz, B. (2002), "Posttensioned energy dissipating connections for moment-resisting steel frames", J. Struct. Eng., 128(9), 1111-1120. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1111).
  14. Erochko, J., Christopoulos, C., Tremblay, R. and Choi, H. (2011), "Residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE 7-05", J. Struct. Eng., 137(5), 589-599. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000296.
  15. Erochko, J., Chrisotouplos, C., Tremblay, R. and Kim, H.J. (2013), "Shake table testing and numerical simulation of a self-centering energy dissipative braced frame", Earthq. Eng. Struct. Dyn., 42(11), 1617-1635. https://doi.org/10.1002/eqe.2290.
  16. Erochko, J., Christopoulos, C. and Tremblay, R. (2015), "Design and testing of an enhanced-elongation telescoping self-centering energy-dissipative brace", J. Struct. Eng., 141(6), 04014163. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001109.
  17. Eurocode 3 (2005), Design of Steel Structures. Part 1.8: Design of Joints, European Committee for Standardization; Brussels, Belgium.
  18. Fang, C., Wang, W. and Feng, W.K. (2019), "Experimental and numerical studies on self-centering beam-to-column connections free from frame expansion", Eng. Struct., 198, 109526. https://doi.org/10.1016/j.engstruct.2019.109526.
  19. Feng, W.K., Fang, C. and Wang, W. (2019), "Behavior and design of top flange-rotated self-centering steel connections equipped with SMA ring spring dampers", J. Constr. Steel Res., 159, 315-329. https://doi.org/10.1016/j.jcsr.2019.04.046.
  20. GAQSIQ (2014), Steel Strand for Prestressed Concrete, GB/T 5224-2014. Beijing (China): General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China.
  21. GAQSIQ (2010), Tensile testing of metallic materials-part 1: room temperature test methods implementation guide, GB/T 228.1-2010. Beijing (China): General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China.
  22. Gholami, M., Zare, E., Azandariani, M.G. and Moradifard, R. (2021), "Seismic behavior of dual buckling-restrained steel braced frame with eccentric configuration and post-tensioned frame system", Soil. Dyn. Earthq. Eng., 151, 106977. https://doi.org/10.1016/j.soildyn.2021.106977.
  23. Guo, T., Xu, Z.K., Song, L.L., Wang, L. and Zhang, Z.Q. (2017), "Seismic resilience upgrade of RC frame building using self-centering concrete walls with distributed friction devices", J. Struct. Eng., 143(12), 04017160. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001901.
  24. Guo, T., Wang, L., Xu, Z.K. and Hao, Y.W. (2018), "Experimental and numerical investigation of jointed self-centering concrete walls with friction connectors", Eng. Struct., 161, 192-206. https://doi.org/10.1016/j.engstruct.2018.02.028.
  25. Hu, S.L., Wang, W., Du, B. and Alam, M.S. (2020), "Self-centering energy-absorbing rocking core system with friction spring damper: Experiments, modeling and design", Eng. Struct., 225, 111338. https://doi.org/10.1016/j.engstruct.2020.111338.
  26. Kamperidis, V.C., Karavasilis, T.L. and Vasdravellis, G. (2018), "Self-centering steel column base with metallic energy dissipation devices", J. Constr. Steel Res., 149, 14-30. https://doi.org/10.1016/j.jcsr.2018.06.027.
  27. Kheyroddin, A., Gholhaki, M. and Pachideh, G. (2019), "Seismic evaluation of reinforced concrete moment frames retrofitted with steel braces using IDA and pushover methods in the nearfault field", J. Rehabil. Civ. Eng., 7(1), 159-173. https://doi.org/10.22075/jrce.2018.12347.1211.
  28. Kitayama, S. and Constantinou, C.M. (2017), "Fluidic self-centering devices as elements of seismically resistant structures: description, testing, modeling, and model validation", J. Struct. Eng., 147(7), 04017050. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001787.
  29. Li, Y.D., Ding, Y.L., Geng, F.F. and Wang, L.B. (2019), "Seismic response of self-centering precast concrete frames with hysteretic dampers", Struct. Des. Tall. Spec., 28(8), e1640. https://doi.org/10.1002/tal.1604.
  30. Li, Y.D., Geng, F.F., Ding, Y.L. and Wang, L.B. (2020), "Experimental and numerical study of low-damage self-centering precast concrete frame connections with replaceable dampers", Eng. Struct., 220, 111011. https://doi.org/10.1016/j.engstruct.2020.111011.
  31. Liu, J.L., Xu, L.H. and Li, Z.X. (2020), "Development and experimental validation of a steel plate shear wall with self-centering energy dissipation braces", Thin-Wall. Struct., 148 106598. https://doi.org/10.1016/j.tws.2019.106598.
  32. Lu, Y., Hao, G.Q., Han, Q.H. and Huang, J. (2020), "Steel tubular friction damper and vibration reduction effects of double-layer reticulated shells", J. Constr. Steel Res., 169, 106019. https://doi.org/10.1016/j.jcsr.2020.106019.
  33. McCormick, J., DesRoches, R., Fugazza, D. and Auricchio, F. (2007), "Seismic assessment of concentrically braced steel frames with shape memory alloy braces", J. Struct. Eng., 133(6), 862-870. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(862).
  34. Pachideh, G., Gholhaki, M., Lashkari, R. and Rezayfar, O. (2020a), "Behavior of BRB equipped with a casing comprised of steel and polyamide", Proceedings Inst. Civ. Eng.-Struct. Build., 174(8), 694-705. https://doi.org/10.1680/jstbu.19.00206.
  35. Pachideh, G., Gholhaki, M. and Kafi, M. (2020b), "Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper", Steel. Compos. Struct., 36(2), 197-211. https://doi.org/10.12989/scs.2020.36.2.197.
  36. Pachideh, G., Kafi, M. and Gholhaki, M. (2020c), "Evaluation of cyclic performance of a novel bracing system equipped with a circular energy dissipater", Struct., 28, 467-481. https://doi.org/10.1016/j.istruc.2020.09.007.
  37. Priestley, M.J.N. and MacRae, G.A. (1996), "Seismic tests of precast beam-to-column joint subassemblages with unbonded tendons", PCI J, 41(1), 64-81. https://doi.org/10.15554/pcij.01011996.64.81.
  38. Qiu, C.X. and Zhu, S.Y. (2017a), "Shake table test and numerical study of self-centering steel frame with SMA braces", Earthq. Eng. Struct. Dyn., 46(1), 117-137. https://doi.org/10.1002/eqe.2777.
  39. Qiu, C.X. and Zhu, S.Y. (2017b), "Performance-based seismic design of self-centering steel frames with SMA-based braces", Eng. Struct. 130, 67-82. https://doi.org/10.1016/j.engstruct.2016.09.051.
  40. Qiu, C.X. and Du, X.L. (2019), "Seismic performance of multistory CBFs with novel recentering energy dissipative braces", J. Constr. Steel Res. 168, 105864. https://doi.org/10.1016/j.jcsr.2019.105864.
  41. Qiu, C.X., Zhang, Y.C., Qu, B. Dai, C.X., Hou, H.T. and Li, H. (2019), "Cyclic testing of seismic dampers consisting of multiple energy absorbing steel plate clusters", Eng. Struct., 183, 255-264. https://doi.org/10.1016/j.engstruct.2019.01.003.
  42. Ricles, J.M., Sause,R., Garlock, M.M. and Zhao, C. (2001), "Posttensioned seismic-resistant connections for steel frames", J. Struct. Eng., 127(2), 113-121. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(113).
  43. Rousta, A.M., Shojaeifar, H., Azandariani, M.G., Saberiun, S. and Abdolmaleki, H. (2021) "Cyclic behavior of an energy dissipation semi-rigid moment steel frames (SMRF) system with LYP steel curved dampers", Struct. Eng. Mech., 80(2), 129-142. https://doi.org/10.12989/sem.2021.80.2.129.
  44. Rousta, A.M., Azandariani, M.G., Ardakani, M.A.S. and Shoja, S. (2022), "Cyclic behavior of an energy dissipation system with the vertical steel panel flexural-yielding dampers", Struct., 45, 629-644. https://doi.org/10.1016/j.istruc.2022.09.047.
  45. Rousta, A.M. and Azandariani, M.G. (2022), "Micro-finite element and analytical investigations of seismic dampers with steel ring plates", Steel. Compos. Struct., 43(5), 565-579. https://doi.org/10.12989/scs.2022.43.5.565.
  46. Usefvand, M., Rousta, A.M., Azandariani, M.G. and Abdolmaleki, H. (2021), "Steel dual-ring dampers: micro-finite element modelling and validation of cyclic behavior", Smart Struct. Syst., 28(4), 579-592. https://doi.org/10.12989/sss.2021.28.4.579.
  47. Xu, L.H., Fan, X.W. and Li, Z.X. (2017), "Experimental behavior and analysis of self-centering steel brace with pre-pressed disc springs", J. Constr. Steel Res., 139, 363-373. https://doi.org/10.1016/j.jcsr.2017.09.021.
  48. Xu, X., Tu, J.Q., Cheng, G.M., Zheng, J.H. and Luo, Y.Z. (2019), "Experimental study on self-centering link beams using posttensioned steel-SMA composite tendons", J. Constr. Steel Res., 155, 121-128. https://doi.org/10.1016/j.jcsr.2018.12.026.
  49. Zhu, S.Y. and Zhang, Y.Z. (2007), "Seismic behaviour of self-centering braced frame buildings with reusable hysteretic damping brace", Earthq. Eng. Struct. Dyn., 36, 1329-1346. https://doi.org/10.1002/eqe.683.