DOI QR코드

DOI QR Code

Effect of Electrolysis Parameters on the Fractal Structure of Electrodeposited Copper

  • Na Wu (School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology) ;
  • Chunxia Zhang (School of Metallurgical and Materials Engineering, Chongqing University of Science and Technology) ;
  • Shanyu Han (School of Metallurgical and Materials Engineering, Chongqing University of Science and Technology) ;
  • Juan An (School of Metallurgical and Materials Engineering, Chongqing University of Science and Technology) ;
  • Wentang Xia (School of Metallurgical and Materials Engineering, Chongqing University of Science and Technology)
  • 투고 : 2022.10.21
  • 심사 : 2023.01.02
  • 발행 : 2023.05.28

초록

Models based on diffusion-limited aggregation (DLA) have been extensively used to explore the mechanisms of dendritic particle aggregation phenomena. The physical and chemical properties of systems in which DLA aggregates emerge are given in their fractal. In this paper, we present a comprehensive study of the growth of electrodeposited copper dendrites in flat plate electrochemical cells from a fractal perspective. The effects of growth time, applied voltage, copper ion concentration, and electrolyte acidity on the morphology and fractal dimension of deposited copper were examined. 'Phase diagram' set out the variety of electrodeposited copper fractal morphology analysed by metallographic microscopy. The box counting method confirms that the electrodeposited dendritic structures manifestly exhibit fractal character. It was found that with the increase of the voltage and copper ion concentration. The fractal copper size becomes larger and its morphology shifts towards a dendritic structure, with the fractal dimension fluctuating around 1.60-1.70. In addition, the morphology of the deposited copper is significantly affected by the acidity of the electrolyte. The increase in acidity from 0.01 to 1.00 mol/L intensifies the hydrogen precipitation side reactions and the overflow path of hydrogen bubbles affects the fractal growth of copper dendrites.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China, grant number 52174331; the Natural Science Foundation of Chongqing, grant number cstc2020jcyj-msxmX0471; the Science and Technology Research Program of Chongqing Municipal Education Commission, grant number KJQN202001533; the Master's Degree Innovation Program Project of Chongqing University of Science and Technology, grant number YKJCX2120223.

참고문헌

  1. N. D. Nikolic, L. J. Pavlovic, M. G. Pavlovic, and K. I. Popov, Powder Technol., 2008, 185(3), 195-201. https://doi.org/10.1016/j.powtec.2007.10.014
  2. L. Avramovic, V. M. Maksimovic, Z. Bascarevic, N. Ignjatovic, M. Bugarin, R. Markovic, and N. D. Nikolic, Metals, 2019, 9(1), 56. https://doi.org/10.3390/met9010056
  3. N. D. Nikolic, L. Pavlovic, M. Pavlovic, and K. I. Popov, J. Serb. Chem. Soc., 2007, 72(12), 1369-1381. https://doi.org/10.2298/JSC0712369N
  4. A. Durisinova, Powder Metall., 1991, 34(2), 139-141. https://doi.org/10.1179/pom.1991.34.2.139
  5. I. B. Murashova, N. E. Agarova, A. B. Darintseva, A. B. Lebed, L. M. Yakovleva, Powder Metall. Met. Ceram., 2010, 49, 1-7. https://doi.org/10.1007/s11106-010-9194-8
  6. B. B. Mandelbrot, The fractal geometry of nature, WH freeman, New York, 1982.
  7. L. M. Sander, Nature, 1986, 322, 789-793. https://doi.org/10.1038/322789a0
  8. C. P. Chen and J. Jorne, J. Electrochem. Soc., 1990, 137, 2047.
  9. T. R. N. Mhiochain, G. Hinds, A. Martin, Z. Y. E. Chang, A. Lai, L. Costiner, and J. M. D. Coey, Electrochim. Acta, 2004, 49(27), 4813-4828. https://doi.org/10.1016/j.electacta.2004.03.040
  10. H. P. Tang, J. Z. Wang, J. L. Zhu, Q. B. Ao, J. Y. Wang, B. J. Yang, and Y. N. Li, Powder Technol., 2012, 217, 383-387. https://doi.org/10.1016/j.powtec.2011.10.053
  11. N. M. Santos and D. M. F. Santos, Chaos Soliton. Fractals, 2018,116, 381-385. https://doi.org/10.1016/j.chaos.2018.09.042
  12. B. H. Kaye, Powder Technol., 1978, 21(1), 1-16. https://doi.org/10.1016/0032-5910(78)80103-X
  13. N. D. Nikolic, K. I. Popov, L. J. Pavlovic, and M. G. Pavlovic, Surf. Coat. Technol., 2006, 201(3-4), 560-566. https://doi.org/10.1016/j.surfcoat.2005.12.004
  14. M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, and Y. Sawada, Phys. Rev. Lett., 1984, 53, 286.
  15. M. B. How and N. Aziz, IOP Conf. Ser.: Mater. Sci. Eng., 2018, 285, 012021.
  16. N. Leventis, M. Chen, X. Gao, M. Canalas, and P. Zhang, J. Phys. Chem. B, 1998, 102(18), 3512-3522. https://doi.org/10.1021/jp980498f
  17. N. D. Nikolic, K. I. Popov, L. J. Pavlovic, and M. G. Pavlovic, J. Electroanal. Chem., 2006, 588(1), 88-98. https://doi.org/10.1016/j.jelechem.2005.12.006