DOI QR코드

DOI QR Code

Low-frequency suppression strategy based on MPC without common-mode voltage increases

  • Lianqiang Wang (School of Electrical Engineering, Dalian University of Technology) ;
  • Li Zhang (School of Electrical Engineering, Dalian University of Technology) ;
  • Yongsheng Xiong (School of Electrical Engineering, Dalian University of Technology)
  • Received : 2022.06.03
  • Accepted : 2022.12.19
  • Published : 2023.05.20

Abstract

Modular multilevel converters (MMCs) have attracted a great deal of attention in medium-voltage motor drive applications. However, the excessive fundamental frequency submodule (SM) capacitor voltage ripple at low frequencies is a major technological challenge. In this paper, an SM capacitor voltage fluctuation suppression strategy based on model predictive control (MPC) is proposed. A cost function is employed to replace multiple PI controllers, which makes the control strategy simpler, and avoids the process of the high-frequency injection. To avoid the common-mode voltage (CMV) generated by the proposed suppression strategy, a flying capacitor is added between the upper and lower arms of a traditional MMC. The MPC strategy is divided into two stages. In the first stage, the SM input number of each arm is obtained through an output current prediction model. In the second stage, the optimal switching states are output through a model for SM capacitor voltage fluctuation suppression. When compared with traditional MPC, the design of the stepwise MPC strategy and finite control set omits the design of partial weight factors, which reduces the number of calculations of the SM capacitor voltage fluctuation suppression strategy. Simulation and experiments are carried out at 5 Hz to verify the effectiveness of the proposed strategy. The obtained results show that the proposed strategy can suppress low-frequency SM capacitor voltage fluctuation without increasing the CMV.

Keywords

References

  1. Dekka, A., Wu, B., Fuentes, R.L., Perez, M., Zargari, N.R.: Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE J. Emerg. Select. Topics. Power. Electr. 5(4), 1631-1656 (2017) https://doi.org/10.1109/JESTPE.2017.2742938
  2. Ronanki, D., Williamson, S.S.: Modular multilevel converters for transportation electrifcation: challenges and opportunities. IEEE. Transact. Transport. Electrifc. 4(2), 399-407 (2018) https://doi.org/10.1109/TTE.2018.2792330
  3. Du, S., Wu, B., Tian, K., Navid, R.Z., Cheng, Z.: An active cross-connected modular multilevel converter (AC-MMC) for a medium-voltage motor drive. IEEE. Transact. Industr. Electron. 63(8), 4707-4717 (2016) https://doi.org/10.1109/TED.2016.2620603
  4. Ronanki, D., Williamson, S.S.: A simplified space vector pulse width modulation implementation in modular multilevel converters for electric ship propulsion systems. IEEE. Transact. Transport. Electrif. 5(1), 335-342
  5. Hagiwara, M., Nishimura, K., Akagi, H.: A medium-voltage motor drive with a modular multilevel PWM inverter. IEEE. Trans. Power. Electron. 25(7), 1786-1799 (2010) https://doi.org/10.1109/TPEL.2010.2042303
  6. M. Spichartz, V. Staudt and A. Steimel, "Analysis of the modulevoltage fluctuations of the Modular Multilevel Converter at variable speed drive applications," in Proc. 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), pp. 751-758, 2012.
  7. Hagiwara, M., Hasegawa, I., Akagi, H.: Start-up and low-speed operation of an electric motor driven by a modular multilevel cascade inverter. IEEE Trans. Ind. Appl. 49(4), 1556-1565 (2013) https://doi.org/10.1109/TIA.2013.2256331
  8. Wang, Z., Chen, J., Liao, K., Xiong, J., Zhang, K.: Review on low-frequency ripple suppression methods for MMCs for medium- voltage drive applications". IET. Power. Electr. 11(15), 2403-2414 (2018) https://doi.org/10.1049/iet-pel.2018.5657
  9. Kolb, J., Kammerer, F., Gommeringer, M., Braun, M.: Cascaded control system of the modular multilevel converter for feeding variable-speed drives. IEEE. Trans. Power Electron. 30(1), 349-357 (2015) https://doi.org/10.1109/TPEL.2014.2299894
  10. Antonopoulos, A., Angquist, L., Norrga, S., Ilves, K., Harnefors, L., Nee, H.: Modular multilevel converter AC motor drives with constant torque from zero to nominal speed. IEEE. Trans. Ind. Appl. 50(3), 1982-1993 (2014) https://doi.org/10.1109/TIA.2013.2286217
  11. Espinoza-B, M., Cardenas, R., Clare, J., Soto-Sanchez, D., Diaz, M., Espina, E., Hackl, C.: An integrated converter and machine control system for mmc-based high-power drives. IEEE. Trans. Industr. Electron. 66(3), 2343-2354
  12. L. Bao, H. Yang, X. Gu and R. Zhao, "An Improved Low-Frequency Ripple Suppression Method for Modular Multilevel Converter in Variable-Speed Motor Drive Application," in Proc. 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), pp. 593-596, 2020.
  13. S. Song, J. Liu, S. Ouyang and X. Chen, "An improved highfrequency common-mode voltage injection method in modular multilevel converter in motor drive application," in Proc. 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2496-2500, 2018.
  14. Al Sabbagh, M., Rehman, H., Pan, J., Xu, L.: Suppressing the capacitor voltage fluctuations in low frequency operation of modular multilevel converters. IEEE. Access. 8, 46141-46150 (2020) https://doi.org/10.1109/ACCESS.2020.2978916
  15. Zhao, F., Xiao, G., Zhu, T., Zheng, X., Wu, Z., Zhao, T.: A coordinated strategy of low-speed and start-up operation for mediumvoltage variable-speed drives with a modular multilevel converter. IEEE. Trans. Power Electron. 35(1), 709-724 (2020) https://doi.org/10.1109/TPEL.2019.2913696
  16. He, L., Zhang, K., Xiong, J., Fan, S., Xue, Y.: Low-frequency ripple suppression formedium-voltage drives using modular multilevel converter with full-bridge submodules. IEEE. J. Emerg. Select. Topics. Power. Electr. 04(2), 657-667 (2016) https://doi.org/10.1109/JESTPE.2015.2477433
  17. Lin, H., Wang, Z., Shi, L., Lu, B.: Model predictive control method of modular multilevel converter based on hierarchical control. High. Volt. Eng. 42(1), 143-152 (2016)
  18. W. Tian, X. Gao and R. Kennel, "Model Predictive Control of Modular Multilevel Converters with Independent Arm-Balancing Control," in Proc. 2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), pp. 1-5, 2019.
  19. Gao, X., Tian, W., Pang, Y., Kennel, R.: Model-predictive control for modular multilevel converters operating at wide frequency range with a novel cost function. IEEE. Trans. Industr. Electron. 69(6), 5569-5580 (2022) https://doi.org/10.1109/TIE.2021.3090705
  20. Wang, L., Zhang, L., Xiong, Y., Ma, R.: Low-frequency suppression strategy based on predictive control model for modular multilevel converters. J. Power. Electr. 21(10), 1407-1415 (2021) https://doi.org/10.1007/s43236-021-00286-w
  21. M. Lin, Y. Li, H. Xu, X. Han and Y. Chang, "The Control Research Based on Predictive Current Controlled PMSM Drive," in Proc. 2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), pp. 532-535, 2020.
  22. Ricard, P., Jordi, Z., Josep, P., Salvador, C., Georgios, K., Gabriel, J.C.: Study and comparison of discontinuous modulation for modular multilevel converters in motor drive applications. IEEE. Trans. Industr. Electron. 66(3), 2376-2386
  23. Mohamed, S.D., Ahmed, M.M., Shehab, A., Barry, W.W.: A modular multilevel converter with ripple-power decoupling channels for three-phase MV adjustable-speed drives. IEEE. Trans. Power Electron. 34(5), 4048-4063 (2019)