DOI QR코드

DOI QR Code

Design of imbalance compensator to mitigate circulating currents under master-slave operation of inverters

  • Seungbo Choi (Graduate School of Energy Convergence, Gwangju Institute of Science and Technology (GIST)) ;
  • Hankyu Hwang (Graduate School of Energy Convergence, Gwangju Institute of Science and Technology (GIST)) ;
  • Yongsoon Park (Graduate School of Energy Convergence, Gwangju Institute of Science and Technology (GIST))
  • Received : 2022.11.14
  • Accepted : 2023.02.14
  • Published : 2023.05.20

Abstract

Circulating current should be minimized when multiple inverters are paralleled for power sharing. In this paper, the circulating current problem is discussed for a target system, where a common DC-link is given for two paralleled inverters to drive a single motor. Through a circuit analysis, the transfer-delay differences and unbalanced impedances are identified as two main factors causing circulating current. After the actual conditions of the target system are examined, it is discussed how to design an imbalance compensator to mitigate circulating currents under master-slave operations. In addition, a gain setting is suggested for the compensator to implement an intended response. Finally, the proposed compensating method is assessed with experimental results obtained under diverse operating conditions.

Keywords

Acknowledgement

This work was supported in part by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20203030020200), and (No. 20204010600340).

References

  1. Esch, J.: High-power wind energy conversion systems: State-of-the-art and emerging technologies. Proc. IEEE 103(5), 736-739 (2015) https://doi.org/10.1109/JPROC.2015.2418461
  2. Yu, X., Khambadkone, A.M.: Reliability analysis and cost optimization of parallel-inverter system. IEEE Trans. Ind. Electron. 59(10), 3881-3889 (2012) https://doi.org/10.1109/TIE.2011.2175670
  3. Xu, Z., Li, R., Xu, D.: Control of parallel multirectifiers for a direct-drive permanent-magnet wind power generator. IEEE Tran. Ind. Appl. 49(4), 1687-1696 (2013) https://doi.org/10.1109/TIA.2013.2258312
  4. Li, R., Xu, D.: Parallel operation of full power converters in permanent-magnet direct-drive wind power generation system. IEEE Trans. Ind. Electron. 60(4), 1619-1629 (2013)
  5. Shukla, K., Maheshwari, R.: Circulating current suppression in parallel interleaved 2L VSIs using modified cm offset based method during inductors mismatch condition. IEEE Trans. Ind. Appl. 57(3), 3143-3153 (2021) https://doi.org/10.1109/TIA.2020.3006464
  6. Chen, H., Xing, X.: Circulating current analysis and suppression for module grid-connected inverters under unbalanced conditions. IEEE Access 6, 69120-69129 (2018) https://doi.org/10.1109/ACCESS.2018.2877955
  7. Liu, X., Liu, T., Chen, A., Xing, X., Zhang, C.: Circulating current suppression for paralleled three-level T-type inverters with online inductance identification. IEEE Trans. Ind. Appl. 57(5), 5052-5062 (2021) https://doi.org/10.1109/TIA.2021.3089115
  8. Kang, S.W., Choi, S.Y., Im, J.H., Kim, R.Y., Kim, S.I.: Control strategy for suppression of circulating current using high-frequency voltage compensation in asynchronous carriers for modular and scalable inverter systems. IET Power Electron. 12(14), 3668-3674 (2019) https://doi.org/10.1049/iet-pel.2019.0461
  9. Wang, J., Hu, F., Jiang, W., Wang, W., Gao, Y.: Investigation of zero sequence circulating current suppression for parallel three-phase grid-connected converters without communication. IEEE Trans. Ind. Electron. 65(10), 7620-7629 (2018) https://doi.org/10.1109/TIE.2018.2798613
  10. Xueguang, Z., Li, W., Xiao, Y., Wang, G., Xu, D.: Analysis and suppression of circulating current caused by carrier phase difference in parallel voltage source inverters with SVPWM. IEEE Trans. Power Electron. 33(12), 11007-11020 (2018) https://doi.org/10.1109/TPEL.2018.2826577
  11. Jiang, W., Gao, Y., Xiao, B., Wang, J., Ding, X., Wang, L.: Suppression of high-frequency circulating current caused by asynchronous carriers for parallel three-phase grid-connected converters. IEEE Trans. Ind. Electron. 65(2), 1031-1040 (2018) https://doi.org/10.1109/TIE.2017.2726985
  12. Itkonen, T., Luukko, J., Sankala, A., Laakkonen, T., POllAnen, R.: Modeling and analysis of the dead-time effects in parallel PWM two-level three-phase voltage-source inverters. IEEE Trans. Power Electron. 24(11), 2446-2455 (2009) https://doi.org/10.1109/TPEL.2009.2033064
  13. Maheshwari, R., Gohil, G., Bede, L., Nielsen, S.M.: Analysis and modelling of circulating current in two parallel-connected inverters. IET Power Electron. 8(7), 1273-1283 (2015) https://doi.org/10.1049/iet-pel.2014.0656
  14. Zeng, Z., Li, Z., Goetz, S.M.: Optimal discontinuous space vector PWM for zero-sequence-circulating current reduction in two paralleled three-phase two-level converter. IEEE Trans. Ind. Electron. 68(2), 1252-1262 (2021) https://doi.org/10.1109/TIE.2020.2969068
  15. Zeng, Z., Li, Z., Goetz, S.M.: Line current ripple minimization pwm strategy with reduced zero-sequence circulating current for two parallel interleaved three-phase converters. IEEE Trans. Power Electron. 35(7), 6931-6943 (2020) https://doi.org/10.1109/TPEL.2019.2958878
  16. Jin, X., Liu, S., Shi, W., Yang, H., Zhao, R.: Optimal vector sequences for simultaneous reduction of the switching loss, zero-sequence circulating current, and torque ripple in two parallel interleaved inverter-fed PMSM drives. IEEE Trans. Trans. Electr. 7(3), 1493-1505 (2021) https://doi.org/10.1109/TTE.2021.3054033
  17. Shukla, K., Malyala, V., Maheshwari, R.: A novel carrier-based hybrid PWM technique for minimization of line current ripple in two parallel interleaved two-level VSIs. IEEE Trans. Ind. Electron. 65(3), 1908-1918 (2018) https://doi.org/10.1109/TIE.2017.2745438
  18. Xing, X., Chen, H.: A fast-processing predictive control strategy for common-mode voltage reduction in parallel three-level inverters. IEEE J. Emerg. Sel. Top. Power Electron. 9(1), 316-326 (2021) https://doi.org/10.1109/JESTPE.2019.2956315
  19. T. Itkonen, J. Luukko, T. Laakkonen, P. Silventoinen and O. Pyrhonen: Switching effects in directly paralleled three-phase AC/DC/AC converters with separate DC links. Proc. IEEE Power Electron. Specialists Conf., 1937-1943 (2008)
  20. Wang, F., Wang, Y., Gao, Q., Wang, C., Liu, Y.: A control strategy for suppressing circulating currents in parallel-connected PMSM drives with individual DC links. IEEE Trans. Power Electron. 31(2), 1680-1691 (2016) https://doi.org/10.1109/TPEL.2015.2422791
  21. Jung, H., Sul, S.: Decomposed current controller for a paralleled inverter with a small interfaced inductor. IEEE Trans. Power Electron. 34(9), 9316-9328 (2019) https://doi.org/10.1109/TPEL.2018.2886839
  22. Ravanji, M.H., Amouzegar Ashtiani, N., Parniani, M., Mokhtari, H.: Modeling and control of zero-sequence circulating current in parallel converters with space vector modulation. IEEE J. Emerg. Sel. Top. Power Electron. 5(1), 363-377 (2017) https://doi.org/10.1109/JESTPE.2016.2612944
  23. Prasad, J.S.S., Ghosh, R., Narayanan, G.: Common-Mode Injection PWM for Parallel Converters. IEEE Trans. Ind. Electron. 62(2), 789-794 (2015) https://doi.org/10.1109/TIE.2014.2347914
  24. Zhang, P., Zhang, G., Du, H.: Circulating current suppression of parallel photovoltaic grid-connected converters. IEEE Trans. Circuits Syst II Exp. Briefs 65(9), 1214-1218 (2018)
  25. Xueguang, Z., Jiaming, C., Yan, M., Yijie, W., Dianguo, X.: Bandwidth expansion method for circulating current control in parallel three-phase PWM converter connection system. IEEE Trans. Power Electron. 29(12), 6847-6856 (2014) https://doi.org/10.1109/TPEL.2014.2311046
  26. Chen, A., Zhang, Z., Xing, X., Li, K., Du, C., Zhang, C.: Modeling and suppression of circulating currents for multi-paralleled three-level T-type inverters. IEEE Trans. Ind. Appl. 55(4), 3978-3988 (2019) https://doi.org/10.1109/TIA.2019.2910790
  27. J. Niu et al. (2019) Design of a Single Controller for Multiple Paralleled Inverters. Proc. 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2524-2530
  28. Chierchie, F., Paolini, E.E., Stefanazzi, L.: Dead-Time Distortion Shaping. IEEE Trans. Power Electron. 34(1), 53-63 (2019) https://doi.org/10.1109/TPEL.2018.2825218
  29. Huang, X., Mu, F., Liu, Y., Wu, Y., Sun, H.: Asynchronous gate signal driving method for reducing current imbalance of paralleled IGBT modules caused by driving circuit parameter difference. IEEE Access 9, 86523-86534 (2021) https://doi.org/10.1109/ACCESS.2021.3089495
  30. Wang, D., Zhang, P., Jin, Y., Wang, M., Liu, G., Wang, M.: Influences on Output distortion in voltage source inverter caused by power devices' parasitic capacitance. IEEE Tran. Power Electron. 33(5), 4261-4273 (2018) https://doi.org/10.1109/TPEL.2017.2717859