DOI QR코드

DOI QR Code

The Potency of Abamectin Formulations against the Pine Wood Nematode, Bursaphelenchus xylophilus

  • Jong-won Lee (Department of Ecological Science, Kyungpook National University) ;
  • Abraham Okki Mwamula (Research Institute of Invertebrate Vector, Kyungpook National University) ;
  • Jae-hyuk Choi (Department of Ecological Science, Kyungpook National University) ;
  • Ho-wook Lee (Department of Ecological Science, Kyungpook National University) ;
  • Yi Seul Kim (Research Institute of Invertebrate Vector, Kyungpook National University) ;
  • Jin-Hyo Kim (Department of Agricultural Chemistry, Gyeongsang National University) ;
  • Dong Woon Lee (Department of Ecological Science, Kyungpook National University)
  • Received : 2023.02.03
  • Accepted : 2023.05.08
  • Published : 2023.06.01

Abstract

Abamectin offers great protection against Bursaphelenchus xylophilus, a well-known devastating pathogen of pine tree stands. Trunk injection of nematicides is currently the most preferred method of control. This study aimed to evaluate the potency of the commonly used formulations of abamectin against B. xylophilus. Twenty-one formulations of abamectin were evaluated by comparing their sublethal toxicities and reproduction inhibition potentials against B. xylophilus. Nematodes were treated with diluted formulation concentrations in multi-well culture plates. And, populations preexposed to pre-determined concentrations of the formulations were inoculated onto Botrytis cinerea culture, and in pine twig cuttings. Potency was contrastingly different among formulations, with LC95 of 0.00285 and 0.39462 mg/ml for the most, and the least potent formulation, respectively. Paralysis generally occurred at an application dose of 0.06 ㎍/ml or higher, and formulations with high sublethal toxicities caused significant paralysis levels at the tested doses, albeit the variations. Nematode reproduction was evident at lower doses of 0.00053-0.0006 ㎍/ml both on Botrytis cinerea and pine twigs, with significant variations among formulations. Thus, the study highlighted the inconsistencies in the potency of similar product formulations with the same active ingredient concentration against the target organism, and the need to analyze the potential antagonistic effects of the additives used in formulations.

Keywords

Acknowledgement

This study was carried out with the support of 'R&D Program for Forest Science Technology (Project No. "2021333D10-2223-CD02")' provided by Korea Forest Service (Korea Forestry Promotion Institute).

References

  1. Abawi, G. S., Ludwig, J. W., Morton, H. V. and Hofer, D. 2003. Efficacy of abamectin as seed treatment against Meloidogyne hapla and Pratylenchus penetrans. J. Nematol. 35:321-322.
  2. Baojun, Y. and Qouli, W. 1989. Distribution of the pinewood nematode in China and susceptibility of some Chinese and exotic pines to the nematode. Can. J. For. Res. 19:1527-1530. https://doi.org/10.1139/x89-232
  3. Beggel, S., Werner, I., Connon, R. E. and Geist, J. P. 2010. Sub-lethal toxicity of commercial insecticide formulations and their active ingredients to larval fathead minnow (Pimephales promelas). Sci. Total Environ. 408:3169-3175. https://doi.org/10.1016/j.scitotenv.2010.04.004
  4. Becker, O. J., Morton, H. V. and Hofer, D. 2003. Utilization of abamectin seed coating in vegetable transplant production systems. J. Nematol. 35:324.
  5. Bi, Z., Gong, Y., Huang, X., Yu, H., Bai, L. and Hu, J. 2015. Efficacy of four nematicides against the reproduction and development of pinewood nematode. Bursaphelenchus xylophilus. J. Nematol. 47:126-132.
  6. Cabrera, J. A., Kiewnick, S., Grimm, C., Dababat, A. E.-F. A. and Sikora, R. A. 2009. Effective concentration and range of activity of abamectin as seed treatment against root-knot nematodes in tomato under glasshouse conditions. Nematology 11:909-915. https://doi.org/10.1163/156854109X433371
  7. Cheng, L., Xu, S., Xu, C., Lu, H., Zhang, Z., Zhang, D., Mu, W. and Liu, F. 2017. Effects of trans-2-hexenal on reproduction, growth and behaviour and efficacy against the pinewood nematode, Bursaphelenchus xylophilus. Pest Manag. Sci. 73:888-895. https://doi.org/10.1002/ps.4360
  8. Choi, J.-H., Lee J.-W., Lee, H.-W., Jang, C., Kim, Y. S., Okki, M. A., Ha, N. M., Lee, J. K., Han, H., Nam, Y. W. and Lee, D. 2022. Time-dependent change of host by nematicide tree injection and pine wood nematode, Bursaphelenchus xylophilus inoculation in two pine species, Pinus densiflora and P. thunbergii. Korean J. Pestic. Sci. 26:43-54. https://doi.org/10.7585/kjps.2022.26.1.43
  9. Choi, Y. E. and Moon, Y. S. 1989. Survey on distribution of pine wood nematode (Bursaphelenchus xylophilus) and its pathogenicity to pine trees in Korea. Korean J. Plant Pathol. 5:277-286.
  10. Cox, C. and Surgan, M. 2006. Unidentified inert ingredients in pesticides: implications for human and environmental health. Environ. Health Perspect. 114:1803-1806. https://doi.org/10.1289/ehp.9374
  11. Cvetovich, R. J., Kelly, D. H., DiMichele, L. M., Shuman, R. F. and Grabowski, E. J. J. 1994. Syntheses of 4''-epi-Amino-4''-deoxyavermectins B1. J. Org. Chem. 59:7704-7708. https://doi.org/10.1021/jo00104a028
  12. Jansson, R. K., Brown, R., Cartwright, B., Cox, D., Dunbar, D. M., Dybas, R. A., Eckel, C., Lasota, J. A., Mookerjee, P. K., Norton, J. A., Peterson, R. F., Starner, V. R. and White, S. 1997. Emamectin benzoate: a novel avermectin derivative for control of lepidopterous pests. In: Proceedings of the 3rd International Workshop on Management of Diamondback Moth and Other Crucifer Pests, eds. by A. Sivapragasam, W. H. Loke, A. K. Hussan and G. S. Lim, pp. 1-7. Malaysian Agricultural Research and Development Institute, Kuala Lumpur, Malaysia.
  13. Jenkins, W. R. 1964. A rapid centrifugal-floatation technique for separating nematodes from soil. Plant Dis. Rep. 48:692.
  14. Khalil, M. S. 2013. Abamectin and azadirachtin as eco-friendly promising biorational tools in integrated nematodes management programs. J. Plant Pathol. Microbiol. 4:174.
  15. Kikuchi, T., Cotton, J. A., Dalzell, J. J., Hasegawa, K., Kanzaki, N., McVeigh, P., Takanashi, T., Tsai, I. J., Assefa, S. A., Cock, P. J. A., Otto, T. D., Hunt, M., Reid, A. J., SanchezFlores, A., Tsuchihara, K., Yokoi, T., Larsson, M. C., Miwa, J., Maule, A. G., Sahashi, N., Jones, J. T. and Berriman, M. 2011. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathog. 7:e1002219.
  16. Kim, B.-N., Kim, J. H., Ahn, J.-Y., Kim, S., Cho, B.-K., Kim, Y.-H. and Min, J. 2020. A short review of the pinewood nematode, Bursaphelenchus xylophilus. Toxicol. Environ. Health Sci. 12:297-304. https://doi.org/10.1007/s13530-020-00068-0
  17. Kishi, Y. 1995. The pine wood nematode and the Japanese pine sawyer. Thomas Company Ltd., Tokyo, Japan. 302 pp.
  18. Kong, J.-O., Lee, S.-M., Moon, Y.-S., Lee, S.-G. and Ahn, Y.-J. 2006. Nematicidal activity of plant essential oils against Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae). J. Asia Pac. Entomol. 9:173-178. https://doi.org/10.1016/S1226-8615(08)60289-7
  19. Kosaka, H., Aikawa, T., Ogura, N., Tabata, K. and Kiyohara, T. 2001. Pine wilt disease caused by the pine wood nematode: the induced resistance of pine trees by the avirulent isolates of nematode. Eur. J. Plant Pathol. 107:667-675. https://doi.org/10.1023/A:1011954828685
  20. Kwon, O.-G., Jung, Y. H., Lee, S. M., Kim, D. S., Cha, B. and Lee, D. 2021. Comparison of proliferation inhibition effect of pine wood nematode, Bursaphelenchus xylophilus, and residual amount according to the different injection hole diameter performing trunk injection of emamectin benzoate in pine tree (Pinus densiflora). Korean J. Pestic. Sci. 25:157-165. https://doi.org/10.7585/kjps.2021.25.2.157
  21. Kwon, T.-S., Shin, J. H., Lim, J.-H., Kim, Y.-K. and Lee, E. J. 2011. Management of pine wilt disease in Korea through preventative silvicultural control. For. Ecol. Manag. 261:562-569. https://doi.org/10.1016/j.foreco.2010.11.008
  22. Lasota, J. A. and Dybas, R. A. 1991. Avermectins, a novel class of compounds: implications for use in arthropod pest control. Annu. Rev. Entomol. 36:91-117. https://doi.org/10.1146/annurev.en.36.010191.000515
  23. Lee, J.-W., Mwamula, A. O., Choi, J.-H., Lee, H.-W., Kim, Y. S., Kim, J.-H., Choi, Y.-H. and Lee D. W. 2023. Comparative bioactivity of emamectin benzoate formulations against the pine wood nematode, Bursaphelenchus xylophilus. Plant Pathol. J. 39:75-87. https://doi.org/10.5423/PPJ.OA.08.2022.0120
  24. Lee, S. K., Lee, K.-T., Park, Y. B., Jin, G.-H., Ka, K.-H. and Seo, S.-T. 2016. Nematicidal effect of Sparassis latifolia-derived sparassol and disodium sparassol against Bursaphelenchus xylophilus. J. Asia Pac. Entomol. 19:81-84. https://doi.org/10.1016/j.aspen.2015.11.010
  25. Lee, S. M., Jung, Y. H., Seo, S.-T., Kim, D. S. and Lee, D. 2021. Residual amounts of trunk-injected abamectin and emamectin benzoate and their control efficacy on pine wood nematode, Bursaphelenchus xylophilus according to the injection time to Korean red pine (Pinus densiflora). Korean J. Pestic. Sci. 25:255-262. https://doi.org/10.7585/kjps.2021.25.4.255
  26. Lee, S. M., Kim, D. S., Lee, S. G., Park, N. C. and Lee, D. W. 2009. Selection of trunk injection pesticides for preventive of pine wilt disease, Bursaphelenchus xylophilus on Japanese black pine (Pinus thunbergii). Korean J. Pestic. Sci. 13:267-274.
  27. Li, D., Wu, X., Yu, X., Huang, Q. and Tao, L. 2015. Synergistic effect of non-ionic surfactants Tween 80 and PEG6000 on cytotoxicity of insecticides. Environ. Toxicol. Pharmacol. 39:677-682. https://doi.org/10.1016/j.etap.2014.12.015
  28. Liu, G., Lin, X., Xu, S., Liu, G., Liu, Z., Liu, F. and Mu, W. 2020. Efficacy of fluopyram as a candidate trunk-injection agent against Bursaphelenchus xylophilus. Eur. J. Plant Pathol. 157:403-411. https://doi.org/10.1007/s10658-020-02023-8
  29. Matsuura, K. 1984. Control of the pine wilt disease caused by pinewood nematodes, Bursaphelenchus xylophilus with trunk-injection. Shokubutsu Boeki 38:27-31.
  30. Mayer, F. L. and Ellersieck, M. R. 1986. Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals (No. 160). U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC, USA. 574 pp.
  31. Mesnage, R. and Antoniou, M. N. 2018. Ignoring adjuvant toxicity falsifies the safety profile of commercial pesticides. Front. Public Health 5:361.
  32. Mesnage, R., Bernay, B. and Seralini, G.-E. 2013. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology 313:122-128. https://doi.org/10.1016/j.tox.2012.09.006
  33. Nagy, K., Duca, R. C., Lovas, S., Creta, M., Scheepers, P. T. J., Godderis, L. and Adam, B. 2020. Systematic review of comparative studies assessing the toxicity of pesticide active ingredients and their product formulations. Environ. Res. 181:108926.
  34. Osman, Y. A., Aldesuquy, H. S., Younis, S. A. and Hussein, S. 2020. Characterization and optimization of abamectin: a powerful antiparasitic from a local Streptomyces avermitilis isolate. Folia Microbiol. https://doi.org/10.1007/s12223-020-00779-4.
  35. Padula, G., Ponzinibbio, M. V., Picco, S. and Seoane, A. 2012. Assessment of the adverse effects of the acaricide amitraz: in vitro evaluation of genotoxicity. Toxicol. Mech. Methods 22:657-661. https://doi.org/10.3109/15376516.2012.666683
  36. Pitterna, T., Cassayre, J., Huter, O. F., Jung, P. M., Maienfisch, P., Kessabi, F. M., Quaranta, L. and Tobler, H. 2009. New ventures in the chemistry of avermectins. Bioorg. Med. Chem. 17: 4085-4095. https://doi.org/10.1016/j.bmc.2008.12.069
  37. Proenca, D. N., Francisco, R., Santos, C. V., Lopes, A., Fonseca, L., Abrantes, I. M. O. and Morais, P. V. 2010. Diversity of bacteria associated with Bursaphelenchus xylophilus and other nematodes isolated from Pinus pinaster trees with pine wilt disease. PLoS ONE 5:e15191.
  38. Qiao, K., Liu, X., Wang, H., Xia, X., Ji, X. and Wang, K. 2012. Effect of abamectin on root-knot nematodes and tomato yield. Pest Manag. Sci. 68:853-857. https://doi.org/10.1002/ps.2338
  39. Radwan, M. A., Saad, A. S. A., Mesbah, H. A., Ibrahim, H. S. and Khalil, M. S. 2019. Investigating the in vitro and in vivo nematicidal performance of structurally related macrolides against the root-knot nematode, Meloidogyne incognita. Hell. Plant Prot. J. 12:24-37. https://doi.org/10.2478/hppj-2019-0005
  40. Rajasekharan, S. K., Lee, J.-H., Ravichandran, V. and Lee, J. 2017. Assessments of iodoindoles and abamectin as inducers of methuosis in pinewood nematode, Bursaphelenchus xylophilus. Sci. Rep. 7:6803.
  41. Rural Development Administration. 2022. Pesticides quality inspection method. RDA guidance No. 2019-29. Rural Development Administration, Suwon, Korea. pp. 455-456.
  42. Schmuck, R., Pfluger, W., Grau, R., Hollihn, U. and Fischer, R. 1994. Comparison of short-term aquatic toxicity: formulation vs active ingredients of pesticides. Arch. Environ. Contam. Toxicol. 26:240-250. https://doi.org/10.1007/BF00224811
  43. Shin, S.-C. 2008. Pine wilt disease in Korea. In: Pine wilt disease, eds. by B. G. Zhao, K. Futai, J. R. Sutherland and Y. Takeuchi, pp. 26-32. Springer, Tokyo, Japan.
  44. Shin, W. S., Jung, Y. H., Lee, S. M., Lee, C. M., Lee, C. J., Kim, D. S., Mun, I. S. and Lee, D. W. 2015. Development of effective screening method for efficacy test of trunk injection agents against pine wood nematode, Bersaphelenchus xylophilus in Japanese black pine, Pinus thunbergii. Korean J. Pestic. Sci. 19:440-449 (in Korean). https://doi.org/10.7585/kjps.2015.19.4.440
  45. Sousa, E., Naves, P. and Vieira, M. 2013. Prevention of pine wilt disease induced by Bursaphelenchus xylophilus and Monochamus galloprovincialis by trunk injection of emamectin benzoate. Phytoparasitica 41:143-148. https://doi.org/10.1007/s12600-012-0272-y
  46. Takai, K., Soejima, T., Suzuki, T. and Kawazu, K. 2000. Emamectin benzoate as a candidate for a trunk-injection agent against the pine wood nematode, Bursaphelenchus xylophilus. Pest Manag. Sci. 56:937-941. https://doi.org/10.1002/1526-4998(200010)56:10<937::AID-PS213>3.0.CO;2-B
  47. Takai, K., Soejima, T., Suzuki, T. and Kawazu, K. 2001. Development of a water-soluble preparation of emamectin benzoate and its preventative effect against the wilting of pot-grown pine trees inoculated with the pine wood nematode, Bursaphelenchus xylophilus. Pest Manag. Sci. 57:463-466. https://doi.org/10.1002/ps.301
  48. Takai, K., Suzuki, T. and Kawazu, K. 2004. Distribution and persistence of emamectin benzoate at efficacious concentrations in pine tissues after injection of a liquid formulation. Pest Manag. Sci. 60:42-48. https://doi.org/10.1002/ps.777
  49. Takemoto, S. 2008. Population ecology of Bursaphelenchus xylophilus. In: Pine wilt disease, eds. by B. G. Zhao, K. Futai, J. R. Sutherland and Y. Takeuchi, pp. 105-122. Springer, Tokyo, Japan.
  50. Van Bezooijen, J. 2006. Methods and techniques for nematology. Wageningen University, Wageningen, Netherlands. 112 pp.
  51. Xue, W., Snoeck, S., Njiru, C., Inak, E., Dermauw, W. and Van Leeuwen, T. 2020. Geographical distribution and molecular insights into abamectin and milbemectin cross-resistance in European field populations of Tetranychus urticae. Pest Manag. Sci. 76:2569-2581. https://doi.org/10.1002/ps.5831
  52. Yoon, Y. J., Kim, E.-S., Hwang, Y.-S. and Choi, C.-Y. 2004. Avermectin: biochemical and molecular basis of its biosynthesis and regulation. Appl. Microbiol. Biotechnol. 63:626-634. https://doi.org/10.1007/s00253-003-1491-4
  53. Zhang, Q., Cheng, Y., Yang, J., Zheng, C. and Lu, X. 2020. Isolation, identification, and characterization of potential impurities of doramectin and evaluation of their insecticidal activity. J. Pharm. Biomed. Anal. 191:113600.
  54. Zhuo, Y., Zhang, T., Wang, Q., Cruz-Morales, P., Zhang, B., Liu, M., Barona-Gomez, F. and Zhang, L. 2014. Synthetic biology of avermectin for production improvement and structure diversification. Biotechnol. J. 9:316-325. https://doi.org/10.1002/biot.201200383