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Abstract
In this paper, we develop a new time series model for predicting IPO (initial public offering) data with

non-negative integer value. The proposed model is based on integer-valued autoregressive (INAR) model with a
Poisson thinning operator. Just as the heterogeneous autoregressive (HAR) model with daily, weekly and monthly
averages in a form of cascade, the integer-valued heterogeneous autoregressive (INHAR) model is considered to
reflect efficiently the long memory. The parameters of the INHAR model are estimated using the conditional
least squares estimate and Yule-Walker estimate. Through simulations, bias and standard error are calculated to
compare the performance of the estimates. Effects of model fitting to the Korea’s IPO are evaluated using perfor-
mance measures such as mean square error (MAE), root mean square error (RMSE), mean absolute percentage
error (MAPE) etc. The results show that INHAR model provides better performance than traditional INAR
model. The empirical analysis of the Korea’s IPO indicates that our proposed model is efficient in forecasting
monthly IPO volumes.

Keywords: initial public offering, integer-valued heterogeneous autoregressive model, conditional
least squares estimate, Yule-Walker estimate

1. Introduction

The integer-valued time series model has recently attracted increasing interest due to its potential
applicability and big data in various fields such as financial markets (Catania and Di Mari, 2021;
Freeland and McCabe, 2004), epidemiology (Appiah and Maposa, 2021; Kowal, 2019) and social
science (Chang et al., 2022; McCabe and Martin, 2005). A time series of count data that fluctuates
over time is observed in industrial and economic fields. In particular, monthly IPO (initial public
offering) volume is in this type of data with cycles. Over the past 20 years, the number of international
IPOs and market capitalization have increased. The IPO wave is closely related to economic factors
such as market regulation. For example, IPO activity decreased during the dot-com bubble (Boeh
and Dunbar, 2014), and IPO volume was found to be sensitive to changes in market conditions in the
Hong Kong stock market (Güçbilmez, 2015). Predicting a count time series containing heterogeneous
effects is an important challenge. Therefore, we develop a new model for the count time series and
conduct an empirical study of monthly IPOs.

As a prior study of the count time series, the first order integer-valued autoregressive (INAR(1))
model with Poisson distribution was introduced by McKenzie (1985) and Al-Osh and Alzaid (1988)
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introduced the qth-order integer-valued moving average (INMA(q)) model. An integer-valued ARMA
(INARMA) model for the dependent sequence of Poisson counts was investigated by McKenzie
(1988). Al-Osh and Alzaid (1990), Du and Li (1991) expanded it to the pth-order (INAR(p)) model.
An integer-valued model with a conditional Poisson distribution was studied by Cardinal et al. (1999).
The INGARCH model is studied by Ferland et al. (2006) as an integer-valued GARCH model, follow-
ing the Poisson distribution for a discrete data. Orozco et al. (2021) studied a new mixed first-order
integer-valued autoregressive process with Poisson innovations.

As for the study of count time series model for the IPO, Ivanov and Lewis (2008) provided a study
to identify determinants of the IPO issue cycle using an autoregressive conditional count model and
Wang and Ning (2022) studied a Markov regime-switching model for predicting IPO volumes and
detecting issue cycles.

In this paper, we propose the integer-valued heterogeneous autoregressive (INHAR) model with
a Poisson distribution to implement a non-negative integer-valued time series model. The parameters
are estimated using the conditional least squares (CLS) method and the Yule-Walker method, and their
asymptotic normalities are established. A simulation study is conducted for the INHAR models with
several orders, which are compared by evaluating bias and standard error. As an empirical example,
the Korea’s IPO data are adopted. Out-of-Sample forecasts are performed in the IPO dataset to calcu-
late one-step ahead predicted value. To evaluate the prediction performance of the proposed INHAR
model, mean square error (MAE), root mean square error (RMSE), mean absolute percentage error
(MAPE), symmetric mean absolute percentage error (SMAPE) and root relative square error (RRSE)
are calculated and compared with those of the existing INAR model, as well as their efficiencies are
evaluated.

The remainder of this paper is organized as follows. In Section 2, the INAR model on which
the INHAR model is based are described and the characteristics of the INHAR model. Section 3
describes the CLSE method for estimating parameters and compares it with the Yule Walker method.
Section 4 describes one-step ahead forecasting and evaluation of forecasting performance by applying
the proposed model to the number of monthly IPO in the South Korea from Jan.2000 to Jul.2022. The
conclusions are given in Section 5.

2. Integer-Valued heterogeneous autoregressive (INHAR) model

In this section, we introduce an integer-valued heterogeneous autoregressive (INHAR) model with
the Poisson thinning operator. Most of integer-valued times series models use the binomial thinning
operator which has been proposed by Steutel and van Harn (1979), and implemented by McKenzie
(1985), Al-Osh and Alzaid (1987), Park and Oh (1997), Freeland and McCabe (2005) and Lu and
Wang (2022). This work adopts the Poisson thinning operator, which has been first introduced by
Ferland et al. (2006, p. 926), and applied by Orozco et al. (2020). Also, Yang et al. (2019) proposed
a generalized Poisson INAR model with the generalized Poisson thinning operator. Mahmoudi and
Rostami (2020) introduced an integer-valued moving average model with power series innovations
based on a Poisson thinning operator. A main characteristic of the Poisson distribution is to count the
number of random events. For this reason, Park and Oh (1997), Freeland and McCabe (2005) and
Lu and Wang (2022) who adopted the binomial thinning operator considered the Poisson distribution
as innovations. A difference between the binomial distribution and Poisson distribution is that the
former has a bounded finite support while the latter has infinite support. In our proposed INHAR(p)
model, though having small probability, all possible nonnegative integer values can be taken, which is
an advantage of the Poisson distribution and is possibly reasonable in the practical counting process
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Figure 1: Stationary and non-stationary of INHAR model.

without any bounded assumption. In the following the definition of the Poisson thinning operator is
stated as in Ferland et al. (2006, p. 926) and Orozco et al. (2020).

Definition 1. Let X be a non-negative integer-valued random variable and α be a positive real num-
ber. The Poisson thinning operator ◦ is given by

α ◦ X =

X∑
j=1

N j, (2.1)

where {N j} is a sequence of independently and identically distributed (i.i.d.) random variables of
Poisson distribution with mean α and N j is independent of X.

For a given non-negative discrete random variables X, the random variable α ◦ X has the Poisson
distribution with mean αX.

Some basic properties of the Poisson thinning operator defined in (2.1):

E [α ◦ X | X] = αX,

Var [α ◦ X | X] = αX,

E [α ◦ X] = αE [X] ,

Var [α ◦ X] = αE [X] + α2Var [X] .

The INHAR(p) process {Xt}, based on the Poisson thinning operator, is defined as follows.

Definition 2. We define a pth order INHAR model {Xt : t ∈ Z} with Poisson distribution by

Xt = α1 ◦ X(1)
t−1 + α2 ◦ X(2)

t−1 + · · · + αp ◦ X(p)
t−1 + Zt, (2.2)



276 SeongMin Yu, Eunju Hwang

where Zt is a sequence of i.i.d. random variables of Poisson distribution with mean λ and for i =

1, 2, . . . , p, X(i)
t−1 is the nearest integer of (Xt−1 + · · · + Xt−hi )/hi with positive integers 1 = h1 < h2 <

· · · < hp, i.e., |X(i)
t−1 − (Xt−1 + · · · + Xt−hi )/hi| ≤ 1/2.

Also, note that αi ◦ X(i)
t−1 =

∑X(i)
t−1

j=1 N(i)
j where N(i)

j are i.i.d. Poisson random variables, independent
of Zt, with parameter αi for each i = 1, 2, . . . , p. Let Ft−1 be all information set up to time t − 1,
i.e. σ-field generated by {Xt−1, Xt−2, . . . }. The conditional mean and the conditional variance of the
INHAR(p) model are, respectively, given as

E [Xt | Ft−1] = α1X(1)
t−1 + · · · + αpX(p)

t−1 + λ,

Var [Xt | Ft−1] = α1X(1)
t−1 + · · · + αpX(p)

t−1 + λ.

The following proposition provides a stationary condition for the model. The proof is given simi-
larly to that of conventional HAR model. It needs to be formulated rigorously because of the difference
of an integer X(i)

t−1 and a real number (Xt−1 + · · · + Xt−hi )/hi.

Proposition 1. For the INHAR(p) model to be stationary, it is necessary that 0 ≤
∑p

i=1 αi < 1.
Its proof is given in Appendix, Figure 1 shows the simulation results of the stationary and non-

stationary INHAR(p) models.
Under this stationary condition, unconditional mean and unconditional variance are given as

µ = E [Xt] =
λ

1 −
∑p

i=1 αi
,

σ2 = Var [Xt] = µ

p∑
i=1

αi + λ +

p∑
i=1

α2
i σ̃

2
i ,

where σ̃2
i is given in the proof of Proposition 1.

3. Estimations

Let θ = (α1, . . . , αp, λ)>, a vector of parameters. Suppose that we observed {X−hp+1, . . . , X−1, X0, . . . , Xn}

with the true parameter value denoted by θo = (αo
1, . . . , α

o
p, λ

o)>.
First the conditional least squares (CLS) method is adopted for the estimation. Since the condi-

tional expectation is given by E[Xt |Ft−1] = α1X(1)
t−1 + · · · + αpX(p)

t−1 + λ, we consider

Qn (θ) =

n∑
t=1

[
Xt − α1X(1)

t−1 − · · · − αpX(p)
t−1 − λ

]2
. (3.1)

The CLS estimate of θ is obtained by minimizing Qn(θ) and given by

θ̂CLS =
(
α̂1,CLS, . . . , α̂p,CLS, λ̂CLS

)>
= X−1Y, (3.2)

where

Y =

 n∑
t=1

XtX
(1)
t−1, . . . ,

n∑
t=1

XtX
(p)
t−1,

n∑
t=1

Xt

> .
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X =



∑n
t=1

(
X(1)

t−1

)2 ∑n
t=1 X(2)

t−1X(1)
t−1 · · ·

∑n
t=1 X(p)

t−1X(1)
t−1

∑n
t=1 X(1)

t−1∑n
t=1 X(1)

t−1X(2)
t−1

∑n
t=1

(
X(2)

t−1

)2
· · ·

∑n
t=1 X(p)

t−1X(2)
t−1

∑n
t=1 X(2)

t−1
...

. . .
...∑n

t=1 X(1)
t−1X(p)

t−1
∑n

t=1 X(2)
t−1X(p)

t−1 · · ·
∑n

t=1

(
X(p)

t−1

)2 ∑n
t=1 X(p)

t−1∑n
t=1 X(1)

t−1
∑n

t=1 X(2)
t−1 · · ·

∑n
t=1 X(p)

t−1 n


.

Theorem 1. In the model (2.2) with condition
∑p

i=1 αi < 1, the CLS estimate θ̂CLS in (3.2) has the
following asymptotic property: As n→ ∞

√
n
(
θ̂CLS − θ

o
) d
−→ N

(
0,V−1WV−1

)
,

where V = limn→∞ X/n, a.s. and W = ((wi j))(p+1)×(p+1), with the following wi j:

wi j = E
[
X(i)

t−1X( j)
t−1Var (εt | Ft−1)

]
, 1 ≤ i, j ≤ p,

wi(p+1) = E
[
X(i)

t−1Var (εt | Ft−1)
]
, 1 ≤ i ≤ p, and w(p+1)(p+1) = E [Var (εt | Ft−1)] ,

where εt = Xt−α1X(1)
t−1−· · ·−αpX(p)

t−1−λ for each t. The expectations are with respect to the stationary
distribution.

Second, we consider the Yule-Walker estimate using the fact that the HAR model of order p
is a form of an AR model of order hp. Recall E[Xt |Ft−1] = α1X(1)

t−1 + · · · + αpX(p)
t−1 + λ and µ =

(α1 + · · · + αp)µ + λ. Let Yt = E[Xt |Ft−1] − µ for each t, then we have

Yt = α1X(1)
t−1 + · · · + αpX(p)

t−1 + λ −
(
α1µ + · · · + αpµ + λ

)
= α1Y (1)

t−1 + · · · + αpY (p)
t−1, (3.3)

where Y (i)
t−1 = X(i)

t−1 − µ for i = 1, . . . , p. Note that Yt takes real values (rather than integers), and can be
expressed, (see the proof of Theorem 2), as a linear AR(hp) form of

Yt = β1Yt−1 + β2Yt−2 + · · · + βhp Yt−hp + δt (3.4)

for some noise δt with mean zero, where β1 =
∑p

l=1 αl/hl; β2 = · · · = βh2 =
∑p

l=2 αl/hl; · · · , in
general, (with h0 = 0)

βhi−1+1 = · · · = βhi =

p∑
l=i

αl

hl
, for i = 1, 2, . . . , p. (3.5)

Let β = (β1, . . . , βhp )> and β̂YW = (β̂1,YW , . . . , β̂hp,YW )> be the Yule-Walker estimate of β from the
AR(hp) model (3.4). Using backward substitution in (3.5), the Yule-Walker estimate α̂YW = (α̂1,YW , . . . ,
α̂p,YW )> of α = (α1, . . . , αp)> are obtained:

α̂p,YW = hp


∑hp

j=hp−1+1 β̂ j,YW

hp − hp−1

 , α̂p−1,YW = hp−1


∑hp−1

j=hp−2+1 β̂ j,YW

hp−1 − hp−2
−
α̂p,YW

hp

 , . . . ,
in general, (with h0 = 0)

α̂i,YW = hi


∑hi

j=hi−1+1 β̂ j,YW

hi − hi−1
−

p∑
l=i+1

α̂l,YW

hl

 , for i = 1, 2, . . . , p. (3.6)
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Table 1: Estimation results of INHAR(2) models with (h1, h2) = (1, 7), (1, 14), (1, 21); θ = (α1, α2, λ) =

(0.4, 0.25, 1), n = 100, 500, 1000

(h1, h2) n α1 = 0.4 α2 = 0.25 λ = 1
bias (s.e.) bias (s.e.) bias (s.e.)

(1,7)

CLS
100 −0.0245 (0.0112) −0.0924 (0.0177) 0.2406 (0.0367)
500 −0.0025 (0.0023) −0.0161 (0.0034) 0.0338 (0.0064)

1000 −0.0007 (0.0011) −0.0092 (0.0017) 0.0219 (0.0033)

YW
100 0.0200 (0.0113) −0.2195 (0.0110) 0.3954 (0.0335)
500 0.0471 (0.0022) −0.1811 (0.0023) 0.2568 (0.0065)

1000 0.0498 (0.0011) −0.1779 (0.0011) 0.2473 (0.0035)

(1,14)

CLS
100 −0.0226 (0.0117) −0.1641 (0.0245) 0.3767 (0.0526)
500 −0.0047 (0.0021) −0.0329 (0.0039) 0.0772 (0.0083)

1000 −0.0006 (0.0011) −0.0169 (0.0019) 0.0334 (0.0040)

YW
100 −0.0103 (0.0106) −0.2417 (0.0106) 0.4781 (0.0330)
500 0.0218 (0.0023) −0.2120 (0.0022) 0.3745 (0.0066)

1000 0.0276 (0.0011) −0.2112 (0.0011) 0.3613 (0.0033)

(1,21)

CLS
100 −0.0334 (0.0113) −0.2648 (0.0363) 0.5770 (0.0761)
500 −0.0055 (0.0021) −0.0426 (0.0047) 0.0946 (0.0094)

1000 −0.0028 (0.0011) −0.0206 (0.0022) 0.0485 (0.0045)

YW
100 −0.0119 (0.0113) −0.2550 (0.0102) 0.5125 (0.0332)
500 0.0183 (0.0022) −0.2274 (0.0021) 0.4113 (0.0068)

1000 0.0193 (0.0011) −0.2248 (0.0011) 0.4070 (0.0034)

Now its related estimate of λ is given by

λ̂ =
1
n

n∑
t=1

(
Xt − α̂1,YW X(1)

t−1 − · · · − α̂p,YW X(p)
t−1

)
or µ̂

(
1 − α̂1,YW − · · · − α̂p,YW

)
, (3.7)

where µ̂ = X̄ =
∑n

t=1 Xt/n.
The next theorem presents the asymptotic normality of µ̂ and α̂YW in the INHAR(p) model, rather

than λ̂. Let H be a p × hp matrix given in the proof of Theorem 2.

Theorem 2. In the model (2.2) with condition
∑p

i=1 αi < 1, we have following asymptotic property
of the YW estimate α̂YW : as n→ ∞

√
n (α̂YW − α)

d
−→ N

(
0, σ2HΓ−1H>

)
,

where Γ = ((γ(k − j)))k, j=1,...,hp , hp × hp matrix of autocovariances γ(k − j) = Cov(Xt+k, Xt+ j), σ2 =

γ(0) − β>γ with γ = (γ(1), . . . , γ(hp))> and H is p × hp matrix with components of functions of

(h1, . . . , hp) such that α = Hβ. Furthermore, we have
√

n(µ̂−µ)
d
−→ N(0, σ2

µ) where σ2
µ =

∑∞
j=−∞ γ( j).

4. Monte-Carlo simulation

In this section, a simulation study is conducted to see the performance of the estimates of the pro-
posed model. Simulated data are generated by INHAR(p) models with order p = 2 and 3 with
Poisson distribution. For order p = 2, lag hp = (1, 7), (1, 14), and (1, 21) are used with parame-
ters θ = (α1, α2, λ) = (0.4, 0.25, 1), while for order p = 3, hp = (1, 7, 14) is used with parameters
θ = (α1, α2, α3, λ) = (0.3, 0.45, 0.05, 2); (0.15, 0.12, 0.1, 1). The sample size n = 100, 500, and 1000
are adopted.
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Table 2: Estimation results of INHAR(3) models with lags (1,7,14); θ = (α1, α2, α3, λ) = (0.3, 0.45, 0.05, 2);
(0.15, 0.12, 0.1, 1), n = 100, 500, 1000

n α1 = 0.3 α2 = 0.45 α3 = 0.05 λ = 2
bias (s.e.) bias (s.e.) bias (s.e.) bias (s.e.)

CLS
100 −0.0334 (0.0140) −0.0544 (0.0328) −0.0683 (0.0300) 1.1731 (0.1439)
500 −0.0085 (0.0026) −0.0036 (0.0058) −0.0328 (0.0060) 0.3579 (0.0237)

1000 −0.0062 (0.0012) 0.0051 (0.0032) −0.0087 (0.0029) 0.0808 (0.0100)

YW
100 0.1022 (0.0058) 0.0025 (0.0079) −0.2567 (0.0059) 0.9407 (0.0201)
500 0.0421 (0.0017) 0.0594 (0.0070) −0.2042 (0.0051) 0.2922 (0.0253)

1000 0.0161 (0.0008) 0.0297 (0.0018) −0.0906 (0.0022) −0.0333 (0.0188)

n α1 = 0.15 α2 = 0.12 α3 = 0.1 λ = 1
bias (s.e.) bias (s.e.) bias (s.e.) bias (s.e.)

CLS
100 −0.0036 (0.0122) −0.0882 (0.0287) −0.1697 (0.0449) 0.2916 (0.0485)
500 0.0051 (0.0021) −0.0041 (0.0052) −0.0539 (0.0057) 0.0499 (0.0063)

1000 −0.0062 (0.0012) −0.0007 (0.0026) −0.0162 (0.0030) 0.0236 (0.0028)

YW
100 0.0343 (0.0036) 0.0567 (0.0074) −0.0231 (0.0041) 0.3055 (0.0089)
500 −0.0032 (0.0022) −0.0015 (0.0037) −0.0058 (0.0028) 0.3064 (0.0052)

1000 −0.0019 (0.0013) 0.0047 (0.0023) 0.0035 (0.0024) 0.2880 (0.0032)

The CLS estimates and the Yule-Walker estimates are calculated and compared along with their
bias and standard error. When the order p = 2 in Table 1, estimates of the CLS method decrease in
bias and standard error as the sample size n increases. But, the Yule-Walker estimate yields somewhat
inconsistent bias for α1 as the sample size n increases. It is due to the effect of a big size of matrix
H in the Yule-Walker estimates. As for the estimates of Poisson parameter λ, the CLS estimates have
efficient results in bias, between 0.0219 and 0.0485 as n = 1000, whereas the Yule-Walker estimates
have bias between 0.2473 and 0.4070 as n = 1000. The Yule-Walker method does not improve the
bias of the estimates of λ as size increases due to affect of the big size of matrix H via the Equation
(3.7).

When the order of p = 3 in Table 2, not all biases of the CLS method decrease as n increases, but
have small values of 0.0051 and −0.0062. For the estimates of λ, when n = 1000, the CLS estimates
have effective bias between 0.0236 and 0.0808, while the Yule-Walker estimates have bias between
−0.0333 and 0.2880.

From the simulation results, we conclude that the CLS estimates have the smaller values of bias
and standard error than those of the Yule-Walker estimates. In the next section, we handle the em-
pirical example with real data set and compare the INHAR model with the existing INAR model by
illustrating the forecasting along with various performance measures.

5. Empirical example

5.1. Data description

This section examines the prediction of Korea’s IPO data through the INHAR model. We get the
monthly IPO volume (using KOSDAQ) of the Korean stock market from Jan.2000 to Jul.2022 on the
Korea investor’s network for disclosure system (https://kind.krx.co.kr) which includes 1851 IPOs over
271 months.

Figure 2 and Table 3 show Korea’s monthly IPO volume and its descriptive statistics. The monthly
IPO volumes are stationary based on augmented Dickey Fuller (ADF) in Table 3.

Financial-Macro time series data such as economic growth rate, stock return and IPO are known
to have excess kurtosis, thick tail distribution characteristics, and positive or negative skewness, and



280 SeongMin Yu, Eunju Hwang

2000 2004 2008 2012 2016 2020
(2000.01 ~ 2022.07)

0

10

20

30

40
IPO volume in the Korea stock market

Figure 2: Monthly IPO volume in the Korea stock market.

Table 3: Descriptive statistics for the monthly IPO variable

n Mean Median Maximum Minimum Std Skewness Kurtosis ADF statistic ADF p-value
271 6.830 6.000 39.000 0.000 6.104 1.985 5.408 −2.914 0.044

these characteristics have non-normality characteristics (Xiaochun, 2019).
HAR models are known to reflect the heterogeneity of time series. In other words, it means that it

can reflect the long-term memory according to the moving average of the monthly IPO volume. Since
IPO volume is an integer, it is modeled as an integer-valued HAR model with Poisson distribution.

5.2. Estimation results

To evaluate the performance of the INHAR model, we compare the coefficient estimates and standard
errors according to the parameters. Considering that it is monthly data, lags hp were selected by year
(1,12), semi-annual (1,6,12).

The CLS estimate and Yule-Walker estimate for the fitted INHAR(p) model by order are shown
in Table 4. The graph of the fitted model for CLS estimation is shown in Figure 3.

5.3. Out-of-Sample forecasting

From Jan.2000 to Dec.2020, 252 in-sample observations are used for model estimation, and from
Jan.2021 to Jul.2022, 19 observations are used for out-of-sample forecasting comparisons, the num-
ber of which is denoted by m. We evaluate the five measurements of mean absolute error (MAE),
root mean square error (RMSE), mean absolute percentage error (MAPE), symmetric mean absolute
percentage error (SMAPE) and root relative square error (RRSE) to investigate the one-step ahead
forecasting performance.

Assume that {X1, . . . , Xn} is the data observed during the in-sample period and Xn+1 is the data
used to calculate out-of-sample forecasts. Xn+1|n is one-step ahead forecast. N represents the time
epoch of out-of-sample to get one-step ahead forecast. N − m + 1, . . . ,N are the time index used to
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Table 4: Coefficients and standard errors (s.e.) of estimates for INHAR models with order p = 2, 3

CLS YW
coef. (s.e.) coef. (s.e.)

INHAR(2)
hp = (1,12)

α1 0.3225 (0.0617) 0.3205 (0.0618)
α2 0.4392 (0.1056) 0.5205 (0.1058)
λ 1.6492 (0.6555) 1.1577 (0.6565)

INHAR(3)
hp = (1,6,12)

α1 0.3069 (0.0667) 0.3025 (0.0668)
α2 0.1141 (0.1840) 0.1981 (0.1843)
α3 0.3442 (0.1862) 0.3404 (0.1865)
λ 1.6411 (0.6564) 1.1782 (0.6575)

2000 2004 2008 2012 2016 2020
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2000 2004 2008 2012 2016 2020
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Fitted INHAR(3) model for monthly IPO

Real data
Fitted  alues
Residuals

Figure 3: Fitted INHAR(p) models for monthly IPO, p = 2, 3.

compute the difference between the actual and predicted values, and XN is the last observation in the
total sample. The five performance measures are defined as follows.

MAE =
1
m

N−1∑
n=N−m

∣∣∣X̂n+1| n − Xn+1
∣∣∣ ,

RMSE =

√√√
1
m

N−1∑
n=N−m

(
X̂n+1| n − Xn+1

)2
,

MAPE =
100
m

N−1∑
n=N−m

∣∣∣∣∣∣ X̂n+1| n − Xn+1

Xn+1

∣∣∣∣∣∣ ,
SMAPE =

100
m

N−1∑
n=N−m

∣∣∣Xn+1 − X̂n+1| n
∣∣∣

|Xn+1| +
∣∣∣X̂n+1| n

∣∣∣ ,
RRSE =

√√√√√∑N−1
n=N−m

(
X̂n+1| n − Xn+1

)2

∑N−1
n=N−m

(
X̄1 − Xn+1

)2 ,
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Table 5: Comparison of forecasting performance of INHAR and INAR models; (2021.01–2022.07)

CLS YW
MAE RMSE MAPE SMAPE RRSE MAE RMSE MAPE SMAPE RRSE

INHAR(2) 2.4699 2.9643 39.1116 16.5429 1.108 2.4731 2.9821 40.2379 16.5121 1.1146
INAR(2) 2.7350 3.1520 40.7012 18.4818 1.1781 2.7306 3.1500 40.6475 18.4700 1.1774

INHAR(3) 2.4897 2.9743 39.1858 16.7153 1.1117 2.4891 3.0040 40.9191 16.5691 1.1228
INAR(3) 2.8006 3.1744 41.3265 18.8416 1.1865 2.7781 3.1682 41.2272 18.6899 1.1842

Figure 4: Forecasting of INHAR(p) models, p = 2, 3.

where X̄1 = (
∑N−1

n=N−m Xn+1)/m.

The one-step ahead forecasting performance of the INHAR and INAR models is presented in
Table 5. The INHAR model showed better forecasting performance than the INAR model.

The forecasts plot for the CLS estimate can be seen in Figure 4, and the 95% prediction interval
is displayed between Jan.2021 and Jul.2022.

Also, to elaborate on the comparison with the INHAR model, the efficiency of the proposed and
existing model is calculated using two metrics of MAE, RMSE, MAPE and RRSE: The INHAR
Model Efficiency, relative to the benchmark INAR model, is defined by

Effi f =

(
f0 − f1

f1

)
× 100,

where f0 is MAE, RMSE, MAPE, SMAPE and RRSE of the INAR model, respectively and f1 is those
of the INHAR model.

Table 6 displays the INHAR model efficiency.

Except for SMAPE, the CLS method is more efficient than the Yule-Walker method and the IN-
HAR model can improve the performance error of the conventional INAR model.
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Table 6: Comparison with INHAR model by computing efficiency

Efficiency CLS YW
MAE RMSE MAPE SMAPE RRSE MAE RMSE MAPE SMAPE RRSE

p = 2 10.73 6.33 4.06 11.72 6.33 10.41 5.63 1.02 11.86 5.63
p = 3 12.49 6.73 5.46 12.72 6.73 11.61 5.47 0.75 12.8 5.47

6. Conclusion

In this study, estimation and forecasting of IPO time series data in Korea is studied by applying the
INHAR model instead of the existing INAR model. The time series model for long-memory structure
data is an HAR model that has recently attracted much attention in the field of financial time series
analysis. The INHAR model is analyzed by combining the HAR model and the INAR model that
considers integer values. For model selection, we evaluate the coefficient estimates by the conditional
least squares (CLS) method and the Yule Walker method. It can be seen that the actual value of the
IPO and the fit value by the INHAR model have a small error in the residuals along with the well-
matched fit as shown in Figure 3. As a measure of forecasting performance, MAE, RMSE, MAPE,
SMAPE and RRSE are evaluated in one-step head prediction. 95% prediction intervals and prediction
values can be found in out-of-sample forecasting.

This study is the first attempt of the INHAR model for IPO data in the literature and verifies that the
INHAR model provides a good prediction model for IPO data. Parameter estimation and forecasting
are described with good fit and accuracy. Therefore, the proposed model can be an efficient tool
for IPO analysis. We explored estimates and forecasts using the INHAR model for Korea’s IPO time
series data. However, the IPO data for a specific interval shows a heterogeneous variance. By applying
the INHAR model as a regime-switching model, the discussion on this work can be extended.

For example, a recent Wang and Ning (2022) applied the NB-GARCH model to a regime-switching
model to model the IPO data. The regime-switching INHAR model would be an interesting model
for IPO data showing heterogeneity. This extension will be studied in future studies.

Appendix

Proof of Proposition 1. First we observe mean µt ≡ E[Xt] = E[E[Xt |Ft−1]] = E[α1X(1)
t−1+· · ·+αpX(p)

t−1+

λ].Recall that X(i)
t−1 is the nearest integer of (Xt−1+· · ·+Xt−hi )/hi, i.e., |X(i)

t−1−(Xt−1+· · ·+Xt−hi )/hi| ≤ 1/2.
Let δ(i)

t = X(i)
t−1 − (Xt−1 + · · · + Xt−hi )/hi. Without loss of a generality, we may assume that E[δ(i)

t ] = 0,
Var[δ(i)

t ] = c ≤ 1/4 and δ(i)
t is independent of E[Xt |Ft−1]. Then we have

µt = E

α1

h1

h1∑
j=1

Xt− j + · · · +
αp

hp

hp∑
j=1

Xt− j +

p∑
i=1

αiδ
(i)
t + λ

 = β1µt−1 + β2µt−2 + · · · + βhpµt−hp + λ,

where β j are given in Equation (3.5), since E[
∑p

i=1 αiδ
(i)
t ] = 0. Note that

∑hp

j=1 β j =
∑p

i=1 αi (see
Hwang and Shin, 2014). The recursion of µt above is of the form of AR model of order hp and
we write it using the backshift operator B as (1 −

∑hp

j=1 β jB j)µt = λ. Let D(B) = 1 −
∑hp

j=1 β jB j.
Then µt = D(B)−1λ =

∑∞
j=0 ψ jB jλ where ψ j are coefficients of z j in the Taylor expansion of 1/D(z).

Hence µt =
∑∞

j=0 ψ jλ and noting
∑∞

j=0 ψ j = 1/D(1) = 1/(1 −
∑hp

j=1 β j) = 1/(1 −
∑p

i=1 αi). Thus µt =

λ/(1 −
∑p

i=1 αi), which is denoted by µ. The nonnegative INHAR model {Xt} must satisfy necessarily
the condition 1 −

∑p
i=1 αi > 0.
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Second, we observe

Var [Xt] = E [Var [Xt | Ft−1]] + Var [E [Xt | Ft−1]]

= E
[
α1X(1)

t−1 + · · · + αpX(p)
t−1 + λ

]
+ Var

[
α1X(1)

t−1 + · · · + αpX(p)
t−1 + λ

]
=

(
α1 + · · · + αp

)
µ + λ +

p∑
i=1

α2
i Var

[
X(i)

t−1

]
,

and now Var[X(i)
t−1] = Var[Y (i)

t−1], recalling Y (i)
t−1 = X(i)

t−1−µ = (
∑hi

j=1(Xt− j−µ)+δ(i)
t )/hi. Also, we observe

E

Y (i)
t−1 −

1
hi

hi∑
j=1

Yt− j

 = E

E
 1
hi

hi∑
j=1

(
Xt− j − µ

)
+ δ(i)

t −
1
hi

hi∑
j=1

Yt− j | Ft−1


 = E

[
δ(i)

t

]
= 0,

where Yt = E[Xt |Ft−1] − µ, (see Equation (3.3) on page 5). Thus we may write Y (i)
t−1 = (

∑hi
j=1 Yt− j +

δ(i)
t )/hi a.s. and

Yt = α1

 1
h1

h1∑
j=1

Yt− j

 + · · · + αp

 1
hp

hp∑
j=1

Yt− j

 + δt,

where δt =
∑p

i=1 αiδ
(i)
t with mean E[δt] = 0. Therefore, Equation (3.4) is obtained along with (3.5).

Under the condition
∑hp

j=1 β j =
∑p

i=1 αi < 1, {Yt} is stationary and Cov(Yt,Yt− j) ≡ γ( j) is independent

of t. Thus Var[X(i)
t−1] = Var[Y (i)

t−1] =

Var

 1
hi

hi∑
j=1

Yt− j + δ(i)
t

 =
1
hi

γ(0) + 2
hi−1∑
j=1

(
1 −

j
hi

)
γ( j)

 + c =: σ̃2
i ,

where c = Var(δ(i)
t ) ≤ 1/4. It is denoted by σ̃2

i . Thus, Var[Xt] = µ
∑p

i=1 α1 + λ +
∑p

i=1 α
2
i σ̃

2
i < ∞.

Finally, we observe Cov(Xt, Xt−k) for k = 1, 2, . . . , which is equal to

E [Cov (Xt, Xt−k | Xt−k)] + Cov (E [Xt | Xt−k] , E [Xt−k | Xt−k]) .

In its first term, we have Cov(Xt, Xt−k |Xt−k) = E[(Xt−E[Xt |Xt−k])(Xt−k−E[Xt−k |Xt−k])|Xt−k] = 0. Thus,
Cov(Xt, Xt−k) = Cov(E[Xt |Xt−k], E[Xt−k |Xt−k]). If k = 1,

Cov (Xt, Xt−1) = Cov (E [Xt | Xt−1] , E [Xt−1 | Xt−1]) = Cov
(
α1X(1)

t−1 + · · · + αpX(p)
t−1 + λ, Xt−1

)
= Cov

 p∑
i=1

αi

 1
hi

hi∑
j=1

Xt− j + δ(i)
t

 + λ, Xt−1

 = Cov

 hp∑
j=1

β jXt− j + δt + λ, Xt−1

 .
Hence, Cov(Xt, Xt−1) =

∑hp

j=1 β jCov(Xt− j, Xt−1). This equality is the same as the autocovariance func-
tion of lag one in the AR model of order hp. If k ≥ 2, then E[Xt |Xt−k] = E[E[Xt |Xt−1, Xt−k]]

= E
[
α1X(1)

t−1 + · · · + αpX(p)
t−1 + λ | Xt−k

]
= E

 hp∑
j=1

β jXt− j + δt + λ | Xt−k

 =

hp∑
j=1

β jE
[
Xt− j | Xt−k

]
+ λ,
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and thus

Cov (Xt, Xt−k) = Cov

 hp∑
j=1

β jE
[
Xt− j | Xt−k

]
+ λ, Xt−k

 =

hp∑
j=1

β jCov
(
E

[
Xt− j | Xt−k

]
, Xt−k

)
.

We will show that Cov(E[Xt− j|Xt−k], Xt−k) = Cov(Xt− j, Xt−k). Just for notational simplicity, let µt, j,k =

E[Xt− j|Xt−k]. Since E[Xt− j − µt, j,k] = 0, we have

Cov
(
Xt− j − E

[
Xt− j | Xt−k

]
, Xt−k

)
= Cov

(
Xt− j − µt, j,k, Xt−k

)
= E

[(
Xt− j − µt, j,k

)
(Xt−k − µ)

]
,

and it is equal to E[E[(Xt− j − µt, j,k)(Xt−k − µ)]|Xt−k] = E[(Xt−k − µ)E[(Xt− j − µt, j,k)|Xt−k]] = E[(Xt−k −

µ)(E[Xt− j|Xt−k] − µt, j,k)] = 0. Thus we have

Cov (Xt, Xt−k) =

hp∑
j=1

β jCov
(
Xt− j, Xt−k

)
,

which is the autocovariance function relation of the conventional stationary AR model of order hp

since
∑hp

j=1 β j =
∑p

i=1 αi < 1. Therefore, {Xt} has covariance-stationary property along with constant
mean and finite variance. 2

Proof of Theorem 1: We follow the spirit of Klimko and Nelson (1978), who discussed the strong
consistency and asymptotic joint normality of the CLS estimation for stochastic process including
stationary ergodic process and Markov processes.

Recall Qn(θ) in Equation (3.1) given by

Qn (θ) =

n∑
t=1

[
Xt − α1X(1)

t−1 − · · · − αpX(p)
t−1 − λ

]2
.

The CLS estimator θ̂n minimizes Qn(θ) and thus satisfies

∂Qn (θ)
∂αi

= 0, (i = 1, 2, . . . , p) and
∂Qn (θ)
∂λ

= 0, (6.1)

which implies the CLS estimator θ̂n ≡ θ̂CLS = X−1Y in (3.2). The expression in (6.1) along with the
CLS is written, in a vector form, as ∂Qn(θ̂n)/∂θ = 0(p+1)×1.

Now to establish its asymptotic normality, consider the Taylor expansion of Qn(θ) about θo:

Qn (θ) = Qn (θo) + (θ − θo)> ∂Qn (θo) /∂θ +
1
2

(θ − θo)> ∂2Qn (θ∗) /∂θ2 (θ − θo) ,

where θ∗ is an intermediate point between θ0 and θ, in the neighborhood of θ0 with 0 < ||θ0 − θ∗|| <
||θ0 − θ|| < δ for some δ > 0. Note that ∂Qn(θo)/∂θ is a (p + 1) × 1 column vector and ∂2Qn(θ∗)/∂θ2 is
a (p + 1) × (p + 1) matrix. Let Vn and Tn be the (p + 1) × (p + 1) matrices, respectively, such that

Vn = ∂2Qn (θo) /∂θ2 and Tn (θ∗) = ∂2Qn (θ∗) /∂θ2 − Vn.

Then we have

0(p+1)×1 =
1
√

n
∂Qn

(
θ̂n

)
/∂θ =

1
√

n
∂Qn (θo) /∂θ +

1
2n

(Vn + Tn (θ∗))
√

n
(
θ̂n − θ

o
)
. (6.2)
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First we may show that

lim
n→∞

1
2n

(Vn + Tn (θ∗)) = lim
n→∞

1
n
X =: V a.s., (6.3)

and second

1
2
√

n
∂Qn (θo) /∂θ

d
−→ N (0,W) . (6.4)

Equation (6.3) is obtained straightforwardly by the second partial derivatives of Qn(θ). In or-
der to show (6.4), write (∂Qn(θo)/2)/∂θ = −(A1, . . . , Ap, Ap+1)>, where Ai =

∑n
t=1 εtX

(i)
t−1, (i =

1, . . . , p), and Ap+1 =
∑n

t=1 εt, with εt given in Theorem 1. Straightforwardly using the conditional
expectation and conditional variance along with the fact E[εt |Ft−1] = 0 a.s., we have E[Ai/

√
n] =

√
nE[X(i)

t−1E[εt |Ft−1]] = 0 for each i. Also, the (p + 1) × (p + 1) variance-covariance matrix is given
by E[(A1, . . . , Ap, Ap+1)>(A1, . . . , Ap, Ap+1)]/n = W = ((wi j)) as in Theorem 1. Indeed, Cov(Ai, A j)/n
= E[E[AiA j|Ft−1]]/n and E[AiA j|Ft−1]/n =

1
n

E

 n∑
t1=1

εt1 X(i)
t1−1

n∑
t2=1

εt2 X( j)
t2−1 | Ft−1

 =
1
n

n∑
t1=1

n∑
t2=1

X(i)
t1−1X( j)

t2−1E
[
εt1εt2 | Ft−1

]
. (6.5)

If t1 , t2, then E[εt1εt2 |Ft−1] =

E
[(

Xt1 − α1X(1)
t1−1 − · · · − αpX(p)

t1−1 − λ
) (

Xt2 − α1X(1)
t2−1 − · · · − αpX(p)

t2−1 − λ
)
| Ft−1

]
= E




X(1)
t1−1∑
j=1

(
N(1)

j − α1

)
+ · · · +

X(p)
t1−1∑
j=1

(
N(p)

j − αp

)
+ Zt1 − λ


×


X(1)

t2−1∑
j=1

(N(1)
j − α1) + · · · +

X(p)
t2−1∑
j=1

(
N(p)

j − αp

)
+ Zt2 − λ


∣∣∣∣∣∣∣∣∣ Ft−1

 .
Noting that E[Zt − λ] = 0, the last is of the form of a linear combination of E[(N(i1)

j1
− αi1 )(N(i2)

j2
−

αi)|Ft−1], which is zero by the independence of {N(i)
j } with mean αi, for i = i1, i2; j = j1, j2. There-

fore, (6.5) is equal to
∑n

t=1 X(i)
t−1X( j)

t−1E[ε2
t |Ft−1]/n = X(i)

t−1X( j)
t−1Var(εt |Ft−1) by the stationarity. Thus

Cov(Ai, A j)/n = E[X(i)
t−1X( j)

t−1Var(εt |Ft−1)] = wi j. By a central limit theorem of a stationary pro-
cess, the joint asymptotic normality in (6.4) is obtained. Hence, by (6.2), (6.3) and (6.4), we have
√

n(θ̂N − θ
o) = N(0,V−1WV−1). 2

Proof of Theorem 2: We recall the discussion about {Yt} on (3.3) and (3.4) along with the argu-
ment in the proof of Proposition 2.1. The Yule-Walker equation of (3.4) can be derived as follows:

γ( j) = β1γ ( j − 1) + · · · + βhpγ( j − hp), j = 1, 2, . . . , hp,

Var (δt) ≡ σ2 = γ (0) − β1γ (1) − · · · − βhpγ
(
hp

)
,
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where γ( j) = Cov(Yt,Yt+ j). From the Yule-Walker equation, we obtain the Yule-Walker estimator
β̂ j,YW of β j: 

β̂1,YW

β̂2,YW
...

β̂hp,YW

 =


1 ρ̂(1) . . . ρ̂(hp − 1)
ρ̂(1) 1 . . . ρ̂(hp − 2)
...

...
. . .

...
ρ̂(hp − 1) ρ̂(hp − 2) . . . 1


−1 

ρ̂(1)
ρ̂(2)
...

ρ̂(hp)

 ,
where ρ̂( j) is sample autocorrelation function of lag j of {Yt}. However, since Yt = E[Xt |Ft−1]− µ, we
may compute ρ̂( j) from the observation {X1, . . . , Xn} as follows:

ρ̂ ( j) =

∑n
t= j+1

(
Xt − X̄

) (
Xt− j − X̄

)
/ (n − j)∑n

t=1

(
Xt − X̄

)2
/n

.

j = 1, 2, . . . , hp, where X̄ =
∑n

t=1 Xt/n. And then straightforwardly the desired YW estimates α̂i,YW

and λ̂YW are obtained as in (3.6) and (3.7).
As for the asymptotic normality of the YW estimator β̂YW of the AR model, it is well known

that
√

n(β̂YW − β)
d
−→ N(0, σ2Γ−1). Notice that α = Hβ and α̂YW = Hβ̂YW (that is, α, α̂YW are linear

transformation of β, β̂YW , respectively), by (3.6), where H is p × hp matrix given by

h1
h1−h0

· · ·
h1

h1−h0

−h1
h2−h1

· · ·
−h1

h2−h1

−h1
h3−h2

· · ·
−h1

h3−h2
. . . . . . −h1

hp−hp−1
· · ·

−h1
hp−hp−1

0 · · · 0 h2
h2−h1

· · ·
h2

h2−h1

−h2
h3−h2

· · ·
−h2

h3−h2
. . . . . . −h2

hp−hp−1
· · ·

−h2
hp−hp−1

... 0 · · · 0 h3
h3−h2

· · ·
h3

h3−h2

...
...

... 0 · · · 0
. . .

...
...

...
...

. . . hp−1

hp−1−hp−2
· · ·

hp−1

hp−1−hp−2

−hp−1

hp−hp−1
· · ·

−hp−1

hp−hp−1

0 · · · 0 0 · · · 0 0 · · · 0 . . . 0 · · · 0 hp

hp−hp−1
· · ·

hp

hp−hp−1


.

Since nE[(α̂YW −α)(α̂YW −α)>] = nE[H(β̂YW −β)(β̂YW −β)>H>] = H(nE[(β̂YW −β)(β̂YW −β)>])H> →
Hσ2Γ−1H> as n→ ∞, the desired normality of α̂YW with the asymptotic variance is completed.

Finally, we derive the asymptotic normality of
√

n(µ̂ − µ). Noting that

n∑
t=1

Xt =

n∑
t=1


X(1)

t−1∑
j=1

N(1)
j + · · · +

X(p)
t−1∑

j=1

N(p)
j + Zt

 ,
which is the sum of independent Poisson random variables, by the central limit theorem for the Poisson
distributions, it suffices to find the asymptotic variance of

√
n(µ̂ − µ) =

∑n
t=1(Xt − µ)/

√
n.

Asymptotic normality of the sample mean in INAR(p) model was given in Jentsch and Weiß
(2017), where the central limit theorem (CLT) from Ibragimov (1962) was applied. Our case has the
same result for the asymptotic variance. To be precise, we have

Var
(√

n (µ̂ − µ)
)

=
1
n

Cov

 n∑
t=1

Xt,

n∑
s=1

Xs

 =
1
n

nγ (0) +

n−1∑
j=1

(n − j) (γ ( j) + γ (− j))

 =: Vn.
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We will show that |σ2
µ − Vn| → 0 as n→ ∞. Using γ(− j) = γ( j) we have

∣∣∣σ2
µ − Vn

∣∣∣ =

∣∣∣∣∣∣∣∣
∞∑

j=−∞

γ ( j) − γ (0) −
n−1∑
j=1

γ ( j) +
1
n

n−1∑
j=1

jγ ( j) −
−n+1∑
j=−1

γ ( j) +
1
n

−n+1∑
j=−1

| j| γ ( j)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
∞∑
j=1

γ ( j) −
n−1∑
j=1

γ ( j)

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
−∞∑
j=−1

γ ( j) −
−n+1∑
j=−1

γ ( j)

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣1n
n−1∑
j=1

jγ ( j)

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣1n
−n+1∑
j=−1

| j|γ ( j)

∣∣∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣∣∣
∞∑
j=n

γ ( j)

∣∣∣∣∣∣∣∣ +
2
n

n−1∑
j=1

j |γ ( j)| ,

where the first term tends to zero as n → ∞. Note that the autocovariance function γ( j) has the same
structure of the conventional HAR model, which is an AR model, and thus |γ( j)| is exponentially
decreasing. Hence the second term 2(

∑n−1
j=1 j|γ( j)|)/n → 0 as n → ∞. Therefore we complete the

proof. 2
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