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Abstract
Longitudinal count data has been widely collected in biomedical research, public health, and clinical trials.

These repeated measurements over time on the same subjects need to account for an appropriate dependency. The
Poisson regression model is the first choice to model the expected count of interest, however, this may not be an
appropriate when data exhibit over-dispersion or under-dispersion. Recently, Conway-Maxwell-Poisson (CMP)
distribution is popularly used as the distribution offers a flexibility to capture a wide range of dispersion in the
data. In this article, we propose a Bayesian CMP regression model to accommodate over and under-dispersion in
modeling longitudinal count data. Specifically, we develop a regression model with random intercept and slope
to capture subject heterogeneity and estimate covariate effects to be different across subjects. We implement a
Bayesian computation via Hamiltonian MCMC (HMCMC) algorithm for posterior sampling. We then compute
Bayesian model assessment measures for model comparison. Simulation studies are conducted to assess the
accuracy and effectiveness of our methodology. The usefulness of the proposed methodology is demonstrated by
a well-known example of epilepsy data.
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1. Introduction

Longitudinal count data has been widely used in biomedical and public health research. Researchers
are interested in studying or examing change in a response variable over time. In such case, observa-
tions are typically measured over time on the same subjects and these tend to be intercorrelated. Thus,
this correlation structure should be properly taken into account in statistical models. Dispersion is an
additional variability that needs to be taken into consideration. It is associated with the level of the
spreadness for the data, and it leads to incorrect statistical inference if it is not properly addressed.

There are a large body of literature to model longitudinal count data. Poisson regression model is
commonly used as Poisson distribution belongs to the exponential family, and modeling in the gen-
eralized linear model (GLM) framework under the Poisson distributional assumption is quite trivial
(Albert, 1992; Fitzmaurice et al., 2008; Leppik et al., 1987; Wu et al., 2019). However, the Pois-
son distribution is not a suitable choice in the presence of over-dispersion or under-dispersion of the
data as dispersed data easily violates equal mean and variance assumption. As an alternative, nega-
tive binomial (NB) regression model is considered appropriate for over-dispersion data, but not for
under-dispersion data. These days, negative binomial regression model is applied to various research
area including RNAseq data (Zhang et al., 2018), microbiome data (Tsonaka and Spittle, 2020), and
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correlated longitudinal counts (Neelon, 2019). For under-dispersion data, generalized Poisson, re-
stricted generalized Poisson were proposed by multiple authors (Consul and Jain, 2004; del Castillo
and P´erez-Casany, 2005; Famoye, 1993; Famoye et al., 2004; Ridout and Besbeas, 2004). How-
ever, the downside of generalized Poisson models is an inability to capture some level of dispersion
due to truncation of the dispersion parameter under certain conditions discussed in Famoye (1993).
Recently, Conway-Maxwell-Poisson (CMP) regression model has been widely adopted in modeling
count data. The distribution of CMP proposed by Conway and Maxwell (1962) is an extension of
Poisson distribution, but offers a flexibility with incorporating a wide spectrum of dispersion in the
data. In a theoretical point of view, the CMP distribution belongs to an exponential family and the suf-
ficient statistics along with other properties under the exponential family are elegantly derived. Sellers
and Morris (2017) and Morris et al. (2017) applied the CMP regression to under-dispersed and over-
dispersed data, respectively. In particular, Morris et al. (2017) considered the random intercept model
to examine performance of three different models: Poisson, negative binomial, and CMP models and
showed a better fit of the CMP regression over the rest of models using PROC NLMIXED procedure.
In Bayesian context, random intercept model was introduced by Guikema and Goffelt (2008) to as-
sess electric power system reliability using PROC MCMC procedure. However, both approaches are
restricted to only random intercept model.

In this article, we propose the CMP regression model to overcome the drawbacks mentioned ear-
lier in Bayesian paradigm. The proposed model is attractive in multiple aspects. First, the proposed
model accommodates subject heterogeneity and the variability in covariate effects. Second, it is com-
putationally feasible. The model is readily implemented via standard statistical software STAN. The
package ‘rstan’ in R software allows users to run STAN code from R for Bayesian computation. The
posterior sampling is conducted via Hamiltonian Markov chain Monte Carlo (HMCMC) algorithm
with No-U-Turn (NUT) sampler (Hoffman and Gelman, 2014). Third, a LKJ prior is used for sam-
pling correlation through Cholesky decomposition. This method assures the positive definiteness of
the generated correlation matrix. We also conduct a Bayesian model comparison using deviance infor-
mation criteria (DIC) and logarithm of pseudo marginal likelihood (LPML) among candidate models.

The remainder of the article is organized as follows. We introduce the CMP distribution and the
proposed CMP regression model in Section 2. In Section 3, we conduct a Bayesian inference and
a feature of LKJ prior is also discussed. In Section 4, we perform a simulation study to evaluate an
empirical performance of the proposed model. The proposed model applied to the analysis of epilepsy
data in Section 5, and we close with a brief discussion in Section 6.

2. Statistical method

2.1. Conway-Maxwell-Poisson (CMP) distribution

Let yi be the count response for subject i for i = 1, . . . ,N. Then the probability mass function of the
CMP distribution with positive shape parameter θi and dispersion parameter φ is written as

Pr (Yi = yi) =
θ

yi
i

(yi!)φ Z (θi, φ)
, (2.1)

where Z(θi, φ) =
∑∞

k=0(θk
i /(k!)φ) is the normalizing constant for i = 1, . . . ,N and not being a closed

form expression. The dispersion parameter φ in (2.1) controls different types of the spreadness in the
data: Equi-dispersion (φ = 1), over-dispersion (0 ≤ φ < 1), and under-dispersion (φ > 1), respectively.

The CMP is a large class of the discrete distribution including Poisson, geometric, and Bernoulli
distributions as special cases. For example, it reduced to Poisson if φ = 1, geometric if φ = 0, and
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Bernoulli if φ → ∞ and pi = θi/(1 + θi), where pi is the probability of success. One feature of this
distribution is that there is a functional relationship between the dispersion parameter φ and shape
parameter θi. Sellers et al. (2012) show that the θi is expressed as the form of the moment of Y , that
is, θi = E(Yφ), while mean and variance are approximately calculated as E(Y) ≈ θ

1/φ
i − (φ − 1)/2φ

and V(Y) ≈ (θ1/φ
i )/φ, respectively. However, the approximation is especially accurate for φ ≤ 1 or

θ
1/φ
i > 10 as discussed in Shmueli et al. (2005). As φ is close to 1, θi approximates the mean, while θi

deviates substantially from the mean in the cases where over-dispersion (φ < 1) or under-dispersion
(φ > 1).

2.2. CMP regression model

Suppose we have a total of N subjects that are longitudinally measured at time j for j = 1, . . . , ni.
Let yi = (yi1, . . . , yini )

T be the count response vector of subject i for i = 1, . . . ,N. We also let
xT

i j = (xi j1, . . . , xi jp) is a p-dimensional covariate vector for subject i including an intercept, and β =

(β1, . . . , βp)T be the corresponding vector of regression coefficients. We further let zT
i j = (zi j1, . . . , zi jq)

is a q-dimensional covariate vector for the random effects, ζ i = (ζi1, . . . , ζiq)T is its corresponding
vector of random effects for subject i. Then, the CMP regression model is written as

log
(
θi j

)
= xT

i jβ + zT
i jζ i, (2.2)

where ζ i ∼ Nq(0,Σ) with Σ is a q × q covariance matrix. The diagonal elements σ2
1, . . . , σ

2
q of Σ are

the variance of the random effects, while off-diagonal elements ρklσkσ` represent covariance between
two (k, `)th random effects for k , `, k = 1, . . . , q and ` = 1, . . . , q. The between subject variability in
the population is captured by the variance of random intercept σ2

1, while the variability of covariate
effect is quantified by σ2

k for k = 2, . . . , q. Note that the assumption of correlated random effects
is common in longitudinal studies, for example, study on Hamilton depression rating scale (HDRS)
discussed in Hedeker and Gibbons (2006).

2.3. The likelihood function

Let D = {D1, . . . ,DN} be the data for the entire subjects, where Di = {yi, Xi, Zi} is the observed data
for subject i. Note that Xi = (xT

i1, . . . , x
T
ini

)T and Zi = (zT
i1, . . . , zT

ini
)T are covariate matrices for the

subject i. Under the proposed model in (2.2), the observed likelihood function for subject i is given
by

L
(
β, φ | Di, ζ i,Σ

)
=

ni∏
j=1

f
(
yi j | xi j,β, φ, ζ i

)
(2.3)

∝

ni∏
j=1

(
1

yi j!

)φ (
exp

(
xT

i jβ + zT
i jζ i

))yi j

 ∞∑
k=0

(
exp

(
xT

i jβ + zT
i jζ i

))k

(k!)φ


−1

.

Then, complete-data likelihood for the entire dataD is written as

L (β, φ, ζ,Σ | D) =

N∏
i=1

ni∏
j=1

f
(
yi j | xi j,β, φ, ζ i

)
f
(
ζ i | Σ

)
(2.4)
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∝

N∏
i=1


ni∏
j=1

(
1

yi j!

)φ (
exp

(
xT

i jβ + zT
i jζ i

))yi j

 ∞∑
k=0

(
exp

(
xT

i jβ + zT
i jζ i

))k

(k!)φ


−1

|Σ|−
1
2 exp

(
−

1
2
ζT

i Σ−1ζ i

) .
As shown in (2.1) and (2.4), there is an infinite sum of normalizing constant in the CMP distribu-

tion. This does not have a closed form expression and results in computational burden in parameter
estimation both frequentist and Bayesian method.

Remark 1. For computational convenience, it follows from Morris et al. (2017) and Choo-Wosoba
et al. (2018) that we consider a truncation of the summation up to a certain order. However, we use a
criteria below to determine the order to be summed up, rather than using a pre-determined fixed order.∣∣∣∣∣∣∣∣∣

K∑
k=0

(
exp

(
xT

i jβ + zT
i jζ i

))k

(k!)φ
−

K−1∑
k′=0

(
exp

(
xT

i jβ + zT
i jζ i

))k′

(k′!)φ

∣∣∣∣∣∣∣∣∣ < ε. (2.5)

In our analysis, we choose a cut-off ε = 0.001 in Bayesian computation.

3. Bayesian inference

3.1. Prior and posterior

We assume that β, φ, and Σ are independent apriori. Thus, the joint prior distributions are of the form
π(β, φ,Σ) = π(β)π(φ)π(Σ). To sample parameters from covariance matrix Σ, we first consider the
separation strategy proposed by Barnard et al. (2000). The method allows users to decompose the
covariance matrix Σ as Σ = V R VT, where V = diag(σ1, . . . , σq) and R is a q × q correlation matrix.

Thus, the joint prior distribution is

π
(
β, φ, σ1, σ2, . . . , σq,R

)
= π (β) π (φ) π (σ1) π (σ2) · · · π

(
σq

)
π (R) .

We assign prior distributions for β ∼ N(0,Ω), φ ∼ LN(a, b), σ` ∼ U(0, c) for ` = 1, . . . , q and
R ∼ LKJ(η), where Ω, a, b, c, and η are pre-determined hyperparameters. We may simply consider
a uniform prior on ρk`, i.e., π(ρk`) ∝ 1, however, this is usually not efficient in posterior sampling.
Hence, we consider LKJ prior on the correlation matrix itself, which we discuss the next section.
Then, the resulting joint posterior distribution is given by

π
(
β, ζ, φ, σ1, . . . , σq,R | D

)
= L (β, φ, ζ,Σ | D) π

(
β, φ, σ1, . . . , σq,R

)
(3.1)

∝

N∏
i=1

ni∏
j=1

(
1

yi j!

)φ (
exp

(
xT

i jβ + zT
i jζ i

))yi j

 ∞∑
k=0

(
exp

(
xT

i jβ + zT
i jζ i

))k

(k!)φ


−1

× |VRV|−
1
2 exp

(
−

1
2
ζT

i (VRV)−1 ζ i

)
× exp

(
−

1
2
βTΩ−1β

)
1

ab
exp

−1
2

(
log φ − a

b

)2 π (R) .

We note that there are different approaches to sample Σ and φ in (3.1). Since φ is non-negative,
simply we consider lognormal, uniform, or hierarchical half-t prior by (Huang and Wand, 2013) for
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Figure 1: LKJ density plot for 2 × 2 correlation matrix R.

π(φ). Inverse-Wishart (IW) distribution, scaled inverse-Wishart (O’Malley and Zaslavsky, 2008), re-
stricted Wishart distribution (Wang et al., 2018) can be used for π(Σ). Recently, some of limitations
in using IW distribution were pointed out by Alvarez et al. (2014). These are including (a) a single
degree of freedom parameter ν in IW distribution, IW(ν,Γ) controls uncertainty in all variance param-
eters and this results in less flexibility to incorporate various amount of prior knowledge from different
variance components (Gelman et al., 2013); (b) if ν > 1, the marginal density of variance parameter is
close to the zero region and leads to biased in the posterior estimate of variance (Gelman, 2006); and
(c) the larger variances are more likely to be associated with the boundary of correlations (nearly to
+1 or −1) while smaller variances are associated with correlations near to zero (Tokuda et al., 2011).

3.2. LKJ prior

Sampling correlation ρ is one of the major task as it has restricted parameter space (−1, 1). Fisher’s
z-transformation or de-constraint transformation can be used, however, we use different approach
proposed by Lewandowski et al. (2009). They use LKJ prior to sample ρ from a space of positive
definite correlation matrix. Assume that the correlation matrix R ∼ LKJ(η). Then the density of R is
defined as

π (R) ∝ det (R)η−1 ,

where det(R) is the determinant of the matrix R. To better understand this density, we generate a plot
for the density of R under different η values. As shown in Figure 1, the distribution is symmetric about
0 and has different shapes depending on the value of η. The value of ρ is almost uniformly distributed
over the parameter space if η = 1. As η increases, ρ is more concentrated at the value of zero, while
the boundary values ρ have higher density as η is close to zero.

Rather than directly sampling correlation matrix R, an implicit parameterization based on Cholesky
decomposition of R is introduced by Carpenter et al. (2017) to maintain positive definiteness of the
correlation matrix. For η > 0, the Cholesky decomposition of R is given by R = LLT where L is a
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Table 1: Simulation study: Equi-Dispersed data (φ = 1.0)

Model Param True Bias MSE LPML DIC

Poisson

β1 1.5 −0.029 0.007 −503.81 1007.55
β2 −0.05 −0.009 0.005
β3 −0.3 0.018 0.008
σ1 0.02 0.064 0.005
σ2 0.03 0.068 0.006
ρ −0.5 0.340 0.120

NB

β1 1.5 −0.028 0.007 −503.92 1008.63
β2 −0.05 −0.009 0.005
β3 −0.3 0.018 0.008
σ1 0.02 0.060 0.004
σ2 0.03 0.064 0.005
ρ −0.5 0.350 0.123

CMP

β1 1.5 0.118 0.057 −504.68 1008.27
β2 −0.05 −0.013 0.006
β3 −0.3 −0.005 0.010
σ1 0.02 0.080 0.008
σ2 0.03 0.088 0.010
ρ −0.5 0.324 0.109

q × q lower triangular matrix with positive diagonal entries lkk > 0 for k = 1, . . . , q. Then we have
π(R) ∝ |J| det(LLT )η−1, where |J| is the Jacobian for the transformation from R to L and η has the same
interpretation as above. Note that this is a standard sampling algorithm in STAN.

3.3. Hamiltonian MCMC (HMCMC) and posterior sampling

HMCMC is a MCMC method that generate efficient transitions covering the posterior distribution
by using derivatives of the density function being sampled. It begins with a specific set of initial
parameters for β, φ, σ1, . . . , σq, ρ, and ζ where ρ = (ρk`). These values are either pre-determined or
to be generated randomly in STAN. Then, a new vector of momentum is drawn and the current value
of parameters is being updated using a numerical integration technique based on the Hamiltonian
dynamics.The details on HMCMC can be found in Betancourt et al. (2017) and Neal (2011).

We provide the posterior sampling scheme for the proposed model. Although the analytical form
of the posterior distribution of π(β, ζ, φ, σ1, . . . , σq,R|D) in (3.1) is not available, the proposed model
enables us to sample efficiently via Hamiltonian MCMC sampling algorithm. The MCMC sam-
pling is achieved via the following full conditional distributions: (i) [β, φ, ζ |σ1, . . . , σq, ρ,D] and
(ii) [σ1, . . . , σq, ρ|β, φ, ζ,D].

For (i), the samplings are achieved through (ia) [β|φ, ζ, σ1, . . . , σq, ρ,D]; (ib) [φ|β, ζ, σ1, . . . , σq, ρ,
D]; and (ic) [ζ |φ,β, σ1, . . . , σq, ρ,D]. Sampling for (ii) are through conditional distributions:

(iia) [σk |σ−k, ρ,β, φ, ζ,D], whereσ−k = (σ1, . . . , σk−1, σk+1, . . . , σq) and (iib) [ρ|σ1, . . . , σq,β, φ, ζ,D
]. The form of full conditional distributions are given in Appendix A.

3.4. Bayesian model assessment

We conduct Bayesian model comparison using two assessment measures: Deviance information crite-
ria (DIC) (Spiegelhalter et al., 2002) and logarithm of pseudo-marginal likelihood (LPML) (Ibarhim et
al., 2001). We note that the normalizing constants are required to compute these assessment measures
when comparing different models. Let Ψ = (β, φ, σ1, . . . , σq, ρ, ζ) be the collection of all parameters.
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Table 2: Simulation study: Over-Dispersed data (φ = 0.6)

Model Param True Bias MSE LPML DIC

Poisson

β1 1.5 0.998 0.999 −690.09 1362.39
β2 −0.05 −0.039 0.005
β3 −0.3 −0.163 0.031
σ1 0.02 0.139 0.024
σ2 0.03 0.162 0.032
ρ −0.5 0.042 0.055

NB

β1 1.5 1.011 1.026 −675.84 1350.67
β2 −0.05 −0.038 0.005
β3 −0.3 −0.170 0.033
σ1 0.02 0.047 0.003
σ2 0.03 0.056 0.004
ρ −0.5 0.353 0.128

CMP

β1 1.5 0.107 0.041 −674.98 1348.87
β2 −0.05 −0.009 0.002
β3 −0.3 −0.014 0.003
σ1 0.02 0.029 0.001
σ2 0.03 0.030 0.001
ρ −0.5 0.329 0.113

Then, the deviance function is defined as

Dev (Ψ) = −2
N∑

i=1

ni∑
j=1

−φ log
(
yi j!

)
+ yi j

(
xT

i jβ + zT
i jζ i

)
− log

 ∞∑
k=0

(
exp

(
xT

i jβ + zT
i jζ i

))k

(k!)φ


 .

Then, the overall DIC is given by

DIC = Dev
(
Ψ̄
)

+ 2pD, (3.2)

where pD = Dev(Ψ) − Dev(Ψ̄), Dev(Ψ) = E[Dev(Ψ)|D], and Ψ̄ = E(Ψ|D). In (3.2), the first term
measures the goodness-of-fit, while pD is the effective number of model parameters. The smaller
value of DIC indicates a better model fit.

The conditional predictive ordinate (CPO) by Geisser and Eddy (1979) measures the contribution
of the subject i to the fitted model, which is defined as

CPOi =

∫
f
(
yi | xi, θ

)
π
(
θ | D(−i)

)
dθ, (3.3)

whereD(−i) is the observed data deleting the subject i. We use the approach proposed by Zhang et al.
(2017) to estimate the CPOi, which is given by

ĈPO
−1
i =

1
B

B∑
b=1

wi

(
ζ(b)

i

)
f
(
yi, ζ

(b)
i | xi, zi, θ

(b)
) ,

where {(ζ(b)
i , θ(b)), b = 1, . . . , B} is a Gibbs sample and wi(ζ i) is a weight function with

∫
wi(ζ i)dζ i = 1

(See the calculation in Appendix B). Then the LPML is readily constructed using the estimated CPO
as

LPML =

N∑
i=1

log (CPOi) . (3.4)

Unlike the DIC, a model with a larger LPML fits the data better.
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4. Simulation study

We conduct a simulation study to evaluate the performance of our methodology. The simulation
design was based on the analysis of epilepsy data in Section 5. We generate 100 simulated datasets,
each with 250 observations in total from n = 50 subjects with 5 measurements at 5 different time
points (t = 0, 1, 2, 3, 4) where 0 indicates a baseline. The time variable is redefined as a binary variable
(0 if baseline and 1 if post-baseline). The treatment assignment is from xi ∼ Bernoulli(0.5) for placebo
vs. treatment group. We assume that the random effects ζ1i ∼ N(0, σ1) and ζ2i ∼ N(0, σ2) where
σ1 = 0.02 and σ2 = 0.03 with ρ = −0.5. True values for regression coefficients β1 = 1.5, β2 = −0.05,
and β3 = −0.3. This represents the beneficial effects of treatment and time, respectively. The true
dispersion parameters are φ = (0.6, 1.0). Thus, the outcome is over-dispersion and equi-dispersion at
each time point. Note that we do not consider under-dispersed scenario in our simulation study as our
real data exhibits over-dispersed.

The simulated datasets are based on the model framework: yi j ∼ CMP(θi j, φ) where log(θi j) =

(β1 + ζ1i) + β2xi j + (β3 + ζ2i)ti j. We run four independent Markov chain for the three models. Each
chain has 1,000 burn-in and the following 3,500 samples are collected for simulation study. This
results in a total of 10,000 posterior samples for each model. To evaluate performance, we consider
three quantities: (i) Bias: Total bias =

∑100
m=1(θ̂m−θ0)/100 where θ0 is the true parameter value for θ and

θ̂m is the posterior estimate of θ from the mth data; (ii) mean square error (MSE): MSE =
∑100

m=1(θ̂m −

θ0)2/100; (iii) DICM = Median{DIC1, . . . ,DIC100} and LPMLM = Median{LPML1, . . . ,LPML100},
where DICm and LPMLm are DIC and LPML from the mth data.

Table 1 presents simulation results for equi-dispersion data. We see that Poisson model has the
least DIC (1007.55) and the greatest LPML (−503.81) values among three models, indicating the best
fit in terms of goodness-of-fit. However, the CMP model has both smaller DIC and LPML compared
to the negative binomial model, meaning that the CMP model does not outperform the NB model when
LPML is considered for model comparison. This inconsistent finding may be because the dispersion
parameter φ in the CMP model is not being generated φ = 1 all the time in posterior sampling. This
results in having other posterior samples from three different types of data: Under-Dispersed, equi-
dispersed, and over-dispersed data. Interestingly, the estimation of fixed effects and random effects
show similar performance in all three models in terms of the bias and MSE evaluation. We see slightly
inflated MSE of the intercept under the CMP model, but the difference is 0.057 after rounding up to
the three decimal points. These simulation results illustrate that the Poisson model has the advantage
in fitting equi-dispersed count data and this is supported by both DIC and LPML.

In Table 2, we present simulation results for over-dispersed data. We obviously see that both Pois-
son and NB regression model have particularly high bias and MSE on the intercept when the data is
over-dispersed. Surprisingly, the Poisson model has much smaller bias and MSE for the correlation
coefficient ρ. Moreover, the Poisson model has relatively higher bias 0.139 and 0.162 for the variabil-
ity compared to NB and CMP models. The CMP model shows a better overall performance than other
two models with the smallest DIC (1348.87) and largest LPML (−674.98) quantities. This simulation
study demonstrates that the CMP model is a better choice in over-dispersed data.

5. Analysis of epilepsy data

5.1. Data description

Epileptic seizure data obtained from a multi-center, double-blind, placebo-controlled clinical trial
(Leppik et al., 1987). The analysis for this study was originally analyzed by Thall and Vail (1990),
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Figure 2: Trajectory of the seizure rate over study period.

Table 3: Posterior summary and model comparison under the three models

Parameter Poisson NB CMP
Mean SD 95% CR Mean SD 95% CR Mean SD 95% CR

β1 1.07 0.15 (0.78,1.36) 1.11 0.15 (0.81,1.41) −0.77 0.18 (−1.11,−0.39)
β2 0.05 0.20 (−0.35,0.44) 0.06 0.21 (−0.36,0.47) 0.01 0.09 (−0.15,0.19)
β3 0.00 0.12 (−0.22,0.23) −0.03 0.12 (−0.27,0.20) 0.73 0.09 (0.54,0.89)
β4 −0.31 0.16 (−0.62,0.01) −0.32 0.17 (−0.64,0.01) −0.13 0.08 (−0.30,0.03)
σ1 0.75 0.08 (0.61,0.92) 0.68 0.09 (0.52,0.87) 0.31 0.05 (0.21,0.42)
σ2 0.52 0.07 (0.39,0.67) 0.36 0.09 (0.18,0.55) 0.22 0.04 (0.15,0.32)
ρ 0.14 0.16 (−0.17,0.43) 0.56 0.22 (0.09,0.92) 0.44 0.18 (0.08,0.78)
φ - - 0.13 0.03 (0.09,0.19) 0.42 0.06 (0.32,0.53)

DIC 1678.49 1674.59 1538.17
LPML −889.60 −842.10 −815.14

and the data was revised by Morris et al. (2017) with PROC NLMIXED procedure using statistical
analysis system (SAS). However, both authors only consider random intercept model to capture sub-
ject variability. With regard to this, we revisit the data to implement Bayesian analysis based on our
proposed model that is an extension of previous approach. Epilepsy is a chronic neurological disorder
that may cause from genetic abnormality, head trauma, stroke, brain tumor, infection, developmental
malfunction, etc. Most of the cases causes are unknown. According to international league against
epilepsy (ILAE), a patient with two or more unprovoked seizures occurring in 24 hours apart is termed
as epileptic.

The datasets consists of the number of seizures for 59 patients suffering from epilepsy, 31 of
them are assigned to the treatment group, as an adjuvant to the standard anti-epileptic chemotherapy
(phenytoin and carbamazepine), and the rest in the placebo group. The primary objective of the
analysis is to compare the changes in the average rates of seizures in two treatment arms. Seizure
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rates are longitudinally measured in an initial eight weeks before baseline and then in every two
weeks in four consecutive treatment periods.

A partial view of the selected individual profiles in Figure 2 depicts that both baseline and post
seizure rates differ by subjects over time across treatment arms. Using the observed data, we compute
the mean and variance. The variance (349.17) is way higher than the mean (12.85), clearly indicating
that there is an over-dispersion in the data. Therefore, the CMP mixed effects model would be a better
choice to accommodate the over-dispersion as well as between and within subjects variability. In the
data, time is defined as an indicator variable of a period after baseline. It is 0 if baseline and 1 if after
baseline. Treatment (trt) is also used as a binary value, that is, 1 if a patient receives an anti-epileptic
drug (progabide) and 0 if placebo. The length of time period measured in weeks and its log scale is
used as the offset. By looking at the profiles for the selected individuals in Figure 2, it is reasonable
to assume that there is a heterogeneity among subjects both in their baseline level and in the changes
of counts over time. Hence, we use the CMP regression model with random effects (random intercept
and intercept) for our analysis. This leads to

Σ =

[
σ1 0
0 σ2

] [
1 ρ
ρ 1

] [
σ1 0
0 σ2

]
= VRV.

5.2. Results

We consider three different models based on the distributions of the response count vectors: (i) Poisson
regression; (ii) negative binomial regression; and (iii) CMP regression. Under each model, we use the
covariate vector xT

i j = (1, trti j, timei j, trti j × timei j) and zT
i j = (1, timei j). For Bayesian analysis, we

take priors as π(φ) = LN(0, 0.5), π(β) = N(0, 100I), π(σk) = U(0, 10) for k = 1, 2, and π(R) =

LKJ(2). For over-dispersion parameter φ, the choice of hyper-parameter provides that with 95%
probability φ is a priori between 0.38 to 2.66, covering a reasonable range of dispersion and it was
also discussed in Choo-Wosoba et al. (2018). We could use inverse-gamma (IG) distribution for
σ2

1 and σ2
2 to maintain the conjugacy for computational benefits, however, we simply use uniform

distribution as this is typically considered in STAN users. Based on our experience, the posterior
mean and corresponding 95% credible intervals are quite robust in using IG(0.01,0.01) vs. U(0, 10).
Also, weakly non-informative priors are placed on the regression coefficients β. We considered the
prior with a large variance 10,000, but the posterior estimates are quite robust (not reported here). We
assume that the random effects are weakly correlated, so take η = 2 in L, which the correlation mostly
lies in between −0.5 and 0.5 with a higher probability compared to outside of this range as shown in
Figure 1.

Table 3 presents the posterior estimates including posterior means, standard deviations (SDs), the
95% credible interval (CR), and model assessment measures under three different models: Poisson,
NB, and CMP regression models. Based on assessment measures, we select the model with the
smallest value of DIC and the largest value of LPML. As expected, the proposed CMP regression
model provides the least DIC (1538.17) and the greatest LPML (−815.14), implying that CMP model
is a better fit compared to other two candidate models, Poisson and NB. The result clearly shows that
CMP regression is more appropriate and a better fit in modeling for over-dispersed data and these are
well-supported by DIC and LPML.

Statistical significance is determined whether the 95% credible interval (CR) of the posterior mean
does include the value of zero or not. We see from Table 3 that between-subject and time covariate
variabilities are reflected through the significantly greater than zero estimates for both random inter-
cept and slopes in the three models. Correlation is also positively estimated, indicating that higher
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between-subject variability results in higher variability of time effect. Furthermore, the estimates
for over-dispersion are 0.13 and 0.42 for negative binomial and the CMP regressions, respectively.
This represents that two models account for over-dispersion in addition to two variabilities with its
correlation. Note that NB model underestimates the over-dispersion effect φ compared to the CMP
regression model. The negative sign for the interaction between progabide and time (β4) in all three
models shows that the beneficial effect of study drug in reducing number of seizures for epilepsy
patients, but these are not statistically significant. However, the estimated regression coefficients of
β is not directly comparable across the models. This is because θi in the CMP distribution does not
represent the mean of the distribution as it does for Poisson and NB regression model. Hence, an ad-
justment β j/φ in the CMP model for j = 1, . . . , 4 using posterior samples provides a crude comparison
with β j in Poisson and NB regression models as discussed in Sellers and Shmueli (2010).

We perform Bayesian analysis by using ‘rstan’ package in R running MCMC from STAN. A total
of 20,000 MCMC samples were generated from the conditional posterior distributions of parameters,
and 10,000 posterior samples were used for posterior summary after 10,000 burn-in. MCMC conver-
gence is checked through trace plots and autocorrelation plots in Figures 3 to 4 in Appendix C, and
the diagnostic procedure discussed in Chen et al. (2000). The STAN code for posterior sampling is
postponed in Appendix D.

6. Concluding remark

We have proposed a Bayesian CMP regression model for longitudinal counts data. In particular, we
incorporate random intercept and slope as well as inherent dispersion in the model. The proposed
model is applied to the Epilepsy data to evaluate the efficacy of the treatment effect and examine
overall time trend. We have found that the model using the CMP distribution has been substantially
improved in the goodness-of-fit, and this is supported by two Bayesian model comparison criteria:
DIC and LPML. Although we implemented the model with lower dimension of the random effects,
the approach is feasible to more than two dimensional random effects under the proposed model.

As discussed in Sellers and Shmueli (2010), the CMP regression model outperforms NB and Pois-
son models in model fitting and predicting power by accounting for a wide spectrum of the dispersion.
This may because the CMP distribution offers a flexible in modeling count data as the level of dis-
persion is directly estimated from the model. Although the method is developed using well-known
existing clinical trial dataset, the same method can be equally applied to other clinical trials or biomed-
ical studies where the observations are repeatedly measured over time based on count type data. For
example, it is potentially applicable to estimate the number of taxa counts in microbiome study and
the number of mortality in public health research. We implement the proposed model in user-friendly
statistical software R using “rstan” package to conduct a Bayesian computation. The HMCMC algo-
rithm is used for generating samples from the posterior distribution and this has been demonstrated to
improve efficient search of parameter spaces in the target posterior distribution. The algorithm is also
the default sampling algorithm in STAN.

While the MCMC sampling via HMCMC is successfully performed in our current setting, we
are aware that there is a room for improvement to overcome computational challenge. As shown in
Section 2.1, the normalizing constant of the CMP distribution is associated with calculating infinite
sum, which is not possible to have the closed expression. This is also addressed by Choo-Wosoba et
al. (2018) to determine the order for the normalizing constant. In our current research, the truncation
level is chosen as K = 50 for epilepsy data to compute Bayesian model assessment measure as the tail
probability after this term is negligible. Our approach has a feasible computational speed and time,
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however, a better methodology needs to be developed for a high level of accuracy in statistical infer-
ence. We also remind the readers that the estimated regression coefficients under the three models,
Poisson, NB, and CMP, may not be directly comparable. The parameter θ does not represent the mean
in the CMP distribution as shown in Section 2.1, and this results in providing difficult comparisons and
ambiguous interpretation for the estimated parameters. However, a simple adjustment or conversion
β/φ allows us to approximate comparison of the estimated parameters between models as discussed
in Sellers and Shmueli (2010).

Notice that we only consider fully observed counts and lower level of zero counts for all subjects
in the current analysis. However, we often see many-zero counts or missing counts in longitudinal
study. A natural extension of the proposed model is to develop either a Bayesian zero-inflated CMP
regression model or Bayesian CMP model with missing observations. These models, however, will
be computationally expensive as more random effects are associated with zero count component and
missing component. Additionally, there is a growing attention to develop the joint modeling of longi-
tudinal count data and survival outcome. The joint modeling offers an improved efficacy assessment
of the treatment effects directly or indirectly, however, we need to deal with additional variability led
by this model framework. The feasibility of such extensions and future research is currently under
consideration.
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Appendix A. Full conditional distributions

The full conditional distributions to implement MCMC algorithm are given as follows. The condi-
tional posterior distribution of β given others is of the form

π (β | V,R, ζ, φ,D) ∝


N∏

i=1

ni∏
j=1

(
1

yi j!

)φ (
exp(xT

i jβ + zT
i jζ i)

)yi j

 ∞∑
k=0

(
exp(xT

i jβ + zT
i jζ i)

)k

(k!)φ


−1

× exp
(
−

1
2
βTΩ−1β

)
.

The conditional posterior distribution of φ given others is written as

π (φ | β,V,R, ζ,D) ∝


N∏

i=1

ni∏
j=1

(
1

yi j!

)φ (
exp(xT

i jβ + zT
i jζ i)

)yi j

 ∞∑
k=0

(
exp

(
xT

i jβ + zT
i jζ i

))k

(k!)φ


−1

×
1

ab
exp

−1
2

(
log φ − a

b

)2 .
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The conditional posterior distribution of ζ given others is given by

π (ζ | β,V,R, φ,D) ∝


N∏

i=1

ni∏
j=1

(
1

yi j!

)φ (
exp

(
xT

i jβ + zT
i jζ i

))yi j

 ∞∑
k=0

(
exp

(
xT

i jβ + zT
i jζ i

))k

(k!)φ


−1

×

N∏
i=1

exp
(
−

1
2
ζT

i (VRV)−1 ζ i

)
.

The conditional posterior distribution of V = diag(σ0, σ1) given others is written as

π (V | β, ζ,R, φ,D) ∝
N∏

i=1

|V |−1 exp
(
−

1
2
ζT

i (VRV)−1 ζ i

)
.

The conditional posterior distribution of R is written as

π (R | β, ζ,V, φ,D) ∝
N∏

i=1

|R|−
1
2 exp

(
−

1
2
ζT

i (VRV)−1 ζ i

)
.

Appendix B. Calculation of the LPML

The logarithm pseudo marginal likelihood (LPML) is defined as the sum of the individual logarithm
CPO values. As shown in the main article, original definition of the CPO is given by

CPOi =

∫
f
(
yi | xi, zi, θ

)
π
(
θ | D(−i)

)
dθ,

where D(−i) is the observed data deleting the subject i. Following Chen et al. (2000), the CPO is
rewritten as

CPOi =

{∫
1

f
(
yi | xi, zi, θ

)π (θ | D) dθ
}−1

.

The proof of this identity can be found from Chapter 10 of Chen et al. (2000). The CPO above can
be obtained using Monte Carlo approach using the posterior samples, which is given by

ĈPO
−1
i =

1
B

B∑
b=1

1

f
(
yi | xi, zi, θ

(b)
) .

However, Zhang et al. (2017) developed a weighted Monte Carlo estimation to compute CPOi in the
presence of random effects. The approach is required to have a normalized weight function wi(ζ i)
where

∫
wi(ζ i)dζ i = 1.

ĈPO
−1
i =

1
B

B∑
b=1

wi

(
ζ(b)

i

)
f
(
yi, ζ

(b)
i | xi, zi, θ

(b)
) ,

where {(ζ(b)
i , θ(b)), b = 1, . . . , B} is a Gibbs sample. As shown in Zhang et al. (2017), the approach is

more efficient and weight function can be obtained by the conditional density of the random effects ζ i
given other parameters and data, wi(ζ i) = f (ζ i|yi, xi, θ).
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Appendix C. Trace plots and autocorrelation plots

We present trace and autocorrelation plots for all model parameters.
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Figure 3: Trace plots for all parameters under the proposed model.
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Figure 4: Autocorrelation plots for all parameters under the proposed model.
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Appendix D. STAN code for Bayesian computation

f u n c t i o n s {
r e a l Z ( r e a l lambda , r e a l nu ) {

r e a l sm ;
r e a l sm prev ;
i n t k ;
r e a l d i f f ;
sm=0;
k =0;
d i f f =1;
whi le ( d i f f > 0 . 0 0 1 ) {

sm prev=sm ;
sm=sm+exp ( k* l o g ( lambda )−nu*lgamma ( k + 1 ) ) ;
d i f f =sm−sm prev ;
k=k +1;

}

re turn ( sm ) ;
}

v e c t o r Zv ( v e c t o r t h e t a , r e a l p h i ) {
i n t N = rows ( t h e t a ) ;
v e c t o r [N] zs ;
f o r ( i i n 1 :N) {

zs [ i ] = Z ( t h e t a [ i ] , p h i ) ;
}

re turn ( z s ) ;
}

r e a l com p o i s s o n l p d f ( v e c t o r y , v e c t o r t h e t a , r e a l p h i ) {
i n t N = rows ( y ) ;
re turn sum ( y . * l o g ( t h e t a )) −sum ( l o g ( Zv ( t h e t a , p h i ) ) ) − p h i *sum ( lgamma ( y + 1 ) ) ;

}

}

data {

i n t < lower=0> N;
i n t < lower=0> P ;
i n t < lower=0> J ;
v e c t o r [N] y ;
matrix [N, P ] X;
v e c t o r [N] t r t ;
v e c t o r [N] t ime ;
v e c t o r [N] l t i m e ;
i n t < lower =1 , upper=J> s u b j [N ] ;

}

p a r a m e t e r s {

rea l < lower =0.0> p h i ;
v e c t o r [ P ] beta ;
vector < lower =0>[2] s igma u ;
c h o l e s k y f a c t o r c o r r [ 2 ] L u ;
matrix [ 2 , J ] z u ;

}

t r a n s f o r m e d p a r a m e t e r s {

matrix [ 2 , J ] u ;
u=diag p r e m u l t i p l y ( s igma u , L u ) * z u ;

}

model {
v e c t o r [N] y h a t ;
L u ˜ \ t e x t {LKJ } c o r r c h o l e s k y ( 2 . 0 ) ;
t o v e c t o r ( z u ) ˜ normal ( 0 , 1 ) ;
s igma u ˜ un i fo rm ( 0 , 1 0 ) ;
p h i ˜ l o g n o r m a l ( 0 , 0 . 5 ) ;

f o r ( i i n 1 :N)



Bayesian Conway-Maxwell-Poisson (CMP) regression for longitudinal count data 307

y h a t [ i ]= exp (X[ i ] * beta+u [ 1 , s u b j [ i ] ]+ u [ 2 , s u b j [ i ] ] * time [ i ]+ l t i m e [ i ] ) ;
y ˜ com p o i s s o n ( yha t , p h i ) ;

}

g e n e r a t e d q u a n t i t i e s {

v e c t o r [N] y h a t ;
f o r ( i i n 1 :N) {

y h a t [ i ]= exp (X[ i ] * beta+u [ 1 , s u b j [ i ] ]+ u [ 2 , s u b j [ i ] ] * time [ i ]+ l t i m e [ i ] ) ;
}

}
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