DOI QR코드

DOI QR Code

Thermal Stability of Phenylphosphonic Acid Modified Polyurethanes

  • Dong-Eun Kim (Department of Chemical Engineering, Dong-A University) ;
  • Seung-Ho Kang (Department of Chemical Engineering, Dong-A University) ;
  • Sang-Ho Lee (Department of Chemical Engineering, Dong-A University)
  • Received : 2023.04.25
  • Accepted : 2023.05.26
  • Published : 2023.06.30

Abstract

The effect of phenylphosphonic acid (PPOA) on polyurethane (PU) thermal stability was studied through Fourier transform infrared spectroscopy and Thermogravimetric analysis. To synthesize PPOA-modified PUs (PPOA-PUs), polyether-type diols (Mw=62, 106, 190, 419, 605) were chemically modified with PPOA and then reacted with 4,4'-dicyclohexylmethane diisocyanate (H12MDI) and 4,4-diphenylmethane diisocyanate (MDI). During thermal decomposition in air, the PPOA embedded in the PUs formed intumescent phosphocarbonaceous char. Below 400℃, PPOA-H12MDI-PUs were more unstable, as PPOA decomposed at lower temperatures than phenyl groups and aliphatic ethers. Above 550℃, the thermal stability of PUs followed this order: PPOA-MDI-PUs > PPOA-H12MDI-PUs > MDI-PUs > H12MDI-PUs. At 700℃, unmodified PUs had no residue, while the PPOA-MDI-PU residue was 4.4~23.0 wt.% and the PPOA-H12MDI-PU residue was 1.5~17.5 wt.%. The enhanced thermal stability of PPOA-MDI-PUs at high temperatures can be attributed to the synergetic effect of PPOA and phenyl groups on the formation of phosphocarbonaceous char.

Keywords

Acknowledgement

This work was supported by the Dong-A University research fund.

References

  1. R. Delobel, M. Le Bras, N. Ouassou, and F. Alistiqsa, "Thermal Behaviours of Ammonium Polyphosphate-Pentaerythritol and Ammonium Pyrophosphate-Pentaerythritol Intumescent Additives in Polypropylene Formulations", J. Fire Sci., 8, 85 (1990).
  2. S. Bourbigot, M. Le Bras, and R. Delobel, "Carbonization mechanisms resulting from intumescence association with the ammonium polyphosphate-pentaerythritol fire retardant system", Carbon, 31, 1219 (1993).
  3. S. Bourbigot, M. Le Bras, R. Delobel, P. Brbant, and J. M. Trbmillon, "Carbonization mechanisms resulting from intumescent - Part II. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retar dant system", Carbon, 33, 283 (1995).
  4. A. R. Horrocks, "Developments in flame retardants for heat and fire resistant textiles-the role of char formation and intumescence", Polym. Degrad. Stab., 54, 143 (1996).
  5. A. F. Grand and C. A. Wilkie, Fire Retardancy of Polymeric Materials, Marcel Dekker Inc., New York, pp. 148-153, 2000.
  6. A. F. Grand and C. A. Wilkie, Fire Retardancy of Polymeric Materials, Marcel Dekker Inc., New York, pp. 194-199, 2000.
  7. A. B. Morgan and C. A. Wikie, Flame retardant polymer nanocomposites, John Wiley & Sons, Inc., New Jersey, pp. 136-137, 2007.
  8. S. W. Shin and S. H. Lee, "Synthesis and Thermal Degradation of Poly(oxydiethylene adipate urethane) Composites Containing Cloisite 30B and Melamine Phosphate", Polymer Korea, 36, 643 (2012).
  9. A. Lorenzetti, M. Modesti, E. Gallo, B. Schartel, S. Besco, and M. Roso, "Synthesis pf phosphinated polyurethane foams with improved fire behaviour", Polymer Degradation and Stability, 97, 2363 (2012).
  10. O. Kwon, J.-C. Lee, K.-S. Seo, C.-S. Seo, and S. B. Kim, "Effect of Flame Retardants on Flame Retardancy of Flexible Polyurethane Foam", Appl. Chem. Eng., 24, 208 (2013).
  11. S. Duquesne, M. L. Bras, S. Bourgiot, R. Delobel, G. Canino, B. Eling, C. Lindsay, T. Roels, and H. Vezin, "Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate", J. Appl. Polym. Sci., 82, 3262 (2001).
  12. H.-S. Park, H.-J. You, H.-J. Jo, I.-W. Shim, H.-S. Hahm, S.-K. Kim, and Y.-G. Kim, "Preparation of Modified Polyesters Containing Triphosphorous and Their Applications To PU Flame-Retardant Coatings", JCT Research, 3, 53 (2006).
  13. M. Barikani, M. V. Ebrahimi, and S. M. S. Mohaghegh, "Influence of Diisocyanate Structure on the Synthesis and Properties of Ionic Polyurethane Dispersions", Polymer-Plastics Technology and Engineering, 46, 1087 (2007). https://doi.org/10.1080/03602550701525214
  14. M. V. Pandya, D. D. Deshpande, and D. G. Hundiwale, "Effect of Diisocyanate Structure on Viscoelastic, Thermal, Mechanical and Electrical Properties of Cast Polyurethanes", J. Appl. Polym. Sci., 32, 4959 (1986).
  15. C. I. Meyrick and H. W. Thompson, "Vibrational spectra of alkyl esters of phosphorus oxy-acids", J. Chem. Soc., 225 (1950).
  16. L. J. Bellamy and L. Beecher, "The Infra-Ted Spectra of Some Organo-phosphorus Esters", J. Chem. Soc., 475 (1952).
  17. M. M. Coleman, D. J. Skrovanek, J. Hu, and P. C. Painter, "Hydrogen Bonding in Polymer Blends. 1. FTIR Studies of Urethane-Ether Blends", Macromolecules, 21, 59 (1988).
  18. M. J. Elwell and A. J. Ryan, "An FT i.r. study of reaction kinetics and structure development in model flexible", Polymer, 37 1353 (1996).
  19. M. A. Perez-Liminana, F. Aran-Ais, A. M. Torro-Palau, A. C. Orgiles-Barcelo, and J. M. Martin-Martinez, "Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups", International Journal of Adhesion & Adhesives, 25, 507 (2005).
  20. I. Yilgor, E. Yilgor, I. G. Guler, T. C. Ward, and G. L. Wilkes, "FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes", Polymer, 47, 4105 (2006).
  21. H.-K. Shin and S.-H. Lee, "Effect of Catalyst Type and NCO index on the Synthesis and Thermal Properties of Poly(urethane-isocyanurate) Foams", Elastomers and Composites, 53, 86 (2018).
  22. H.-I. Tang, R.-K. Lin, T.-F. Way, R.-J. Liou, L.-C. Huang, J.-T. Lin, and C.-C. Sheng, "A study of thermal stability of polyester containing phenyl phosphonate unit for flame retardant fiber", Polym. Degrad. Stab., 54, 373 (1996).
  23. N. Grassie and M. Zulfiqar, "Thermal Degradation of the Polyurethane from 1,4-Butanediol and Methylene Bis(4-phenyl isocyanate)", J. Polym. Sci. Part A: Polym. Chem., 16, 1563 (1978).
  24. N. Grassie, M. Zulfiqar, and M. I. Guy, "Thermal Degradation of a Series of Polyester Polyurethanes", J. Polym. Sci. Part A: Polym. Chem., 18, 265 (1980).
  25. L. Stradella and M. Argentero, "A study of the thermal decomposition of urea, of related compounds and thiourea using DSC and TF-EGA", Thermochim. Acta, 219, 315 (1993).
  26. S. Tischer, M. Bornhorst, J. Amsler, G. Schochb, and O. Deutschmann, "Thermodynamics and reaction mechanism of urea Decomposition", Phys. Chem. Chem. Phys., 21, 16785 (2019).
  27. P. M. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach, and J. Brauer, "Thermal decomposition (pyrolysis) of urea in an open reaction vessel", Thermochim. Acta, 424, 131 (2004).
  28. A. Lundstrom, B. Andersson, and L. Olsson, "Urea thermolysis studied under flow reactor conditions using DSC and FTIR", Chemical Engineering Journal, 150, 544 (2009).
  29. Y. Oishi, Y. Tokuda, H. Hirahara, and K. Mori, "Preparation and Properties of Aromatic Polycarodiimides from Aromatic Diisocyanates", Journal of Photopolymer Science and Technology, 11, 245 (1998)