DOI QR코드

DOI QR Code

Toxicity assessment of food additive(E171) in aquatic environments

식품첨가물 E171이 수생물에 미치는 독성 평가

  • In-Gyu Song (Environmental Biology Research Group, Korea Institute of Toxicology) ;
  • Kanghee Kim (Environmental Biology Research Group, Korea Institute of Toxicology) ;
  • Hakwon Yoon (Environmental Biology Research Group, Korea Institute of Toxicology) ;
  • June-Woo Park (Environmental Biology Research Group, Korea Institute of Toxicology)
  • 송인규 (안전성평가연구소 환경독성영향연구센터) ;
  • 김강희 (안전성평가연구소 환경독성영향연구센터) ;
  • 윤학원 (안전성평가연구소 환경독성영향연구센터) ;
  • 박준우 (안전성평가연구소 환경독성영향연구센터)
  • Received : 2023.01.12
  • Accepted : 2023.03.09
  • Published : 2023.03.31

Abstract

E171, a mixture of titanium dioxide, has been widely used as a food additive due to its whitening effect and low toxicity. However, it has been proven that E171 is no longer safe for public health. So far, there are insufficient studies on the toxic effects of E171 on organisms especially using standardized test methods. In this study, toxicity assessments of E171 to two aquatic species, water flea (Daphnia magna) and zebrafish (Danio rerio), were performed using modified standardized test methods based on the physicochemical properties of E171. The hydrodynamic diameter, polydispersity index, and turbiscan stability index (TSI) were measured to ensure the dispersion stability of E171 in exposure media during the test period. The EC50 for immobilization of water flea was 141.7 mg L-1 while zebrafish was not affected until 100 mg L-1 of E171. Measurements of reactive oxygen species (ROS) and antioxidant enzyme activities confirmed that E171 induced oxidative stress, leading to the activation of superoxide dismutase and catalase in both water flea and zebrafish, although the expression of antioxidant enzyme genes differed between species. These results suggested the potential risk of E171 to aquatic organisms and provided toxicological insights into the impacts of E171 on the environment.

식품첨가제로 주로 사용되는 이산화타이타늄 혼합물인 최근 E171은 체내 축적 및 유전 독성을 야기할 수 있다는 사실이 입증되어, 현재 규정 개정을 통해 E171의 식품첨가물 사용이 제한되고 있다. 그러나, 현재까지 E171의 인체 위해성 연구는 많이 진행된 반면, E171의 환경생물에 미치는 독성 연구는 상대적으로 부족한 실정이다. 따라서, 본 연구에서는 최근 우려되는 잠재적 독성물질인 E171의 환경적 위해성을 파악하기 위해 수생태계를 대표하는 물벼룩(Daphnia magna)과 제브라피쉬(Danio rerio)를 대상으로 나노물질의 특성을 반영한 최신 표준문건을 활용하여 기존 시험법의 한계점을 보완한 최적의 독성시험을 수행하였다. 독성시험 결과, 실제 환경적 현실성을 고려한 농도범위의 E171에 노출된 물벼룩에서 유영저해가 발생했지만, 어류의 경우 치사나 이상행동개체가 관찰되지 않았다. 그러나, 산화스트레스 관련 분자생물학적 분석 결과, E171이 물벼룩과 어류에 모두 산화스트레스를 유발하여 이의 방어작용으로 항산화효소의 활성이 증가하는 것을 확인하였다. 다만, 항산화효소 관련 유전자의 발현 여부는 생물종에 따라 차이가 존재하였다. 따라서, 본 연구 결과를 통해 E171은 실제 환경적 현실성을 고려한 농도에서 수생물에 산화스트레스를 유도할 수 있으나, 생물체의 종류에 따라 가시적인 독성의 정도와 산화스트레스 관련 유전자 발현에 차이가 존재함을 확인하였다. 본 연구는 기존 시험법의 한계점을 보안한 최적의 독성시험을 통해 E171이 수생물에 미치는 위험성을 확인하였으며, 이 결과는 E171의 환경 위해성 평가를 위한 과학적 자료로서 활용될 수 있을 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 한국연구재단(과제번호: NRF-2015M3A7B6027948)과 국토교통부/국토교통과학-기술진흥원(과제번호: RS-2020KA156177)의 지원으로 수행되었습니다.

References

  1. Aksakal E, D Ekinci and CT Supuran. 2021. Dietary inclusion of royal jelly modulates gene expression and activity of oxidative stress enzymes in zebrafish. J. Enzym. Inhib. Med. Chem. 36:885-894. https://doi.org/10.1080/14756366.2021.1900167
  2. Al-Ammari A, L Zhang, J Yang, F Wei, C Chen and D Sun. 2021. Toxicity assessment of synthesized titanium dioxide nanoparticles in fresh water algae Chlorella pyrenoidosa and a zebrafish liver cell line. Ecotox. Environ. Safe. 207:112037 https://doi.org/10.1016/j.colsurfb.2021.112037
  3. Baetke SC, T Lammers and F Kiessling. 2015. Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol. 88:20150207. https://doi.org/10.1259/bjr.20150207
  4. Barber DJ and IC Freestone. 1990. An investigation of the origin of the colour of the Lycurgus Cup by analytical transmission electron microscopy. Archaeometry 32:33-45. https://doi.org/10.1111/j.1475-4754.1990.tb01079.x
  5. Bhattacharjya S, T Adhikari, A Sahu and AK Patra. 2021. Ecotoxicological effect of TiO2 nano particles on different soil enzymes and microbial community. Ecotoxicology 30:719-732. https://doi.org/10.1007/s10646-021-02398-2
  6. Blaznik U, S Krusic, M Hribar, A Kusar, K Zmitek and I Pravst. 2021. Use of food additive titanium dioxide (E171) before the introduction of regulatory restrictions due to concern for genotoxicity. Foods 10:1910. https://doi.org/10.3390/foods10081910
  7. Brunet L, DY Lyon, EM Hotze, PJJ Alvarez and MR Wiesner. 2009. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ. Sci. Technol. 43:4355-4360. https://doi.org/10.1021/es803093t
  8. Chavan S, V Sarangdhar and V Nadanathangam. 2020. Toxicological effects of TiO2 nanoparticles on plant growth promoting soil bacteria. Emerg. Contam. 6:87-92. https://doi.org/10.1016/j.emcon.2020.01.003
  9. Dudefoi W, K Moniz, E Allen-Vercoe, MH Ropers and VK Walker. 2017. Impact of food grade and nano-TiO2 particles on a human intestinal community. Food Chem. Toxicol. 106:242-249. https://doi.org/10.1016/j.fct.2017.05.050
  10. ECHA. 2017. Guidance on Information Requirements and Chemical Safety Assessment Appendix R7-1 for Nanomaterials Applicable to Chapter R7b Endpoint Specific Guidance Version 2.0. European Chemicals Agency. Helsinki, Finland. https://doi.org/10.2823/080237
  11. EFSA. 2021. Safety Assessment of Titanium Dioxide (E171) as a Food Additive. EFSA J. 19:130. https://doi.org/10.2903/j.efsa.2021.6585
  12. EPA, US. 2016a. Ecological Effects Test Guidelines; OCSPP 850.1010 Aquatic Invertebrate Acute Toxicity Test, Freshwater Daphnids.
  13. EPA, US. 2016b. Ecological Effects Test Guidelines; OCSPP 850.1075 Freshwater and Saltwater Fish Acute Toxicity Test.
  14. Federici G, BJ Shaw and RD Handy. 2007. Toxicity of titanium dioxide nanoparticles to rainbow trout(Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat. Toxicol. 84:415-430. https://doi.org/10.1016/j.aquatox.2007.07.009
  15. Fiordaliso F, P Bigini, M Salmona and L Diomede. 2022. Toxicological impact of titanium dioxide nanoparticles and food-grade titanium dioxide (E171) on human and environmental health. Environ. Sci. Nano 9:1199-1211. https://doi.org/10.1039/d1en00833a
  16. Garcia-Garcia S, S Wold and M Jonsson. 2009. Effects of temperature on the stability of colloidal montmorillonite particles at different pH and ionic strength. Appl. Clay Sci. 43:1. https://doi.org/10.1016/j.clay.2008.07.011
  17. Grand View Research. 2021. Market Analyiss Report: Titanium Dioxide Market Size, Share & Trends Analysis Report by Grade (Anatase, Rutile), by Production Process (Sulfate, Chloride), by Application (Paints & Coatings, Plastics) by Region, and Segment Forecasts, 2021-2028. Grand View Research. https://www.grandviewresearch.com/industry-analysis/titaniumdioxide-industry/toc
  18. Greenbaum D, C Colangelo, K Williams and M Gerstein. 2003. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4:1-8. https://doi.org/10.1186/gb-2003-4-9-117
  19. Griffitt RJ, K Hyndman, ND Denslow and DS Barber. 2009. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol. Sci. 107:404-415. https://doi.org/10.1093/toxsci/kfn256
  20. Han HY, MJ Yang, C Yoon, GH Lee, DW Kim, TW Kim, M Kwak, MB Heo, TG Lee, S Kim, JH Oh, HJ Lim, I Oh, S Yoon and EJ Park. 2021. Toxicity of orally administered food-grade titanium dioxide nanoparticles. J. Appl. Toxicol. 41:1127-1147. https://doi.org/10.1002/jat.4099
  21. Hou J, L Wang, C Wang, S Zhang, H Liu, S Li and X Wang. 2019. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J. Environ. Sci. (China) 75:40-53. https://doi.org/10.1016/j.jes.2018.06.010
  22. Hong NH, YJ Jung and JW Park. 2016. Ecotoxicity assessment of silver nanomaterials with different physicochemical characteristics in diverse aquatic organisms. Korean J. Environ. Biol. 34:183-192. https://doi.org/10.11626/KJEB.2016.34.3.183
  23. Hund-Rinke K, C Nickel and D Kuhnel. 2017. Considerations About the Relationship of Nanomaterial's Physical-Chemical Properties and Aquatic Toxicity for the Purpose of Grouping. Umweltbundesamt. UBA TEXTE. 102:2017.
  24. Joudeh N and D Linke. 2022. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J. Nanobiotechnol. 20:1-29. https://doi.org/10.1186/s12951-022-01477-8
  25. Lee SH and BG Lee. 2021. Bioaccumulation of Ag and Zn in earthworms (Eisenia fetida) from soil contaminated with Ag and Zn nanoparticles using a radiotracer method. Korean J. Environ. Biol. 39:550-558. https://doi.org/10.11626/KJEB.2021.39.4.550
  26. Lee SW, SM Kim and J Choi. 2009. Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environ. Toxicol. Pharmacol. 28:86-91. https://doi.org/10.1016/j.etap.2009.03.001
  27. Lu Y, H Zhang, H Wang, N Ma, T Sun and B Cui. 2021. Humic acid mediated toxicity of faceted TiO2 nanocrystals to Daphnia magna. J. Hazard. Mater. 416:126112. https://doi.org/10.1016/j.jhazmat.2021.126112
  28. Luo M, X Qi, T Ren, Y Huang, AA Keller, H Wang, B Wu, H Jin and F Li. 2017. Heteroaggregation of CeO2 and TiO2 engineered nanoparticles in the aqueous phase: Application of turbiscan stability index and fluorescence excitation-emission matrix (EEM) spectra. Colloid Surf. A-Physicochem. Eng. Asp. 533:9-19. https://doi.org/10.1016/j.colsurfa.2017.08.014
  29. Ma H, A Brennan and SA Diamond. 2012. Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environ. Toxicol. Chem. 31:2099-2107. https://doi.org/10.1002/etc.1916
  30. Manier N, A Bado-Nilles, P Delalain, O Aguerre-Chariol and P Pandard. 2013. Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environ. Pollut. 180:63-70. https://doi.org/10.1016/j.envpol.2013.04.040
  31. Musial J, R Krakowiak, DT Mlynarczyk, T Goslinski and BJ Stanisz. 2020. Titanium dioxide nanoparticles in food and personal care products - what do we know about their safety? Nanomaterials 10:1-23. https://doi.org/10.3390/nano10061110
  32. Nguyen TMP, P Lemaitre, M Kato, K Hirota, K Tsukagoshi, H Yamada, A Terabe, H Mizutani and S Kanehira. 2021. Preparation of anatase titanium dioxide nanoparticle powders submitting reactive oxygen species (ROS) under dark conditions. Mater. Sci. Appl. 12:89-100. https://doi.org/10.4236/msa.2021.122006
  33. OECD GD No. 317. 2021. Guidance Document on Aquatic and Sediment Toxicological Testing of Nanomaterials. Organisation for Economic Co-operation and Development.
  34. OECD GD No. 318. 2020. Guidance Document for the Testing of Dissolution and Dispersion Stability of Nanomaterials and the Use of the Data for Further Environmental Testing and Assessment Strategies. Organisation for Economic Co-operation and Development.
  35. OECD TG No. 202. 2004. Daphnia sp. Acute Immobilization Test, OECD Guidelines for the Testing of Chemicals. Organisation for Economic Co-operation and Development. https://doi.org/10.1787/9789264069947-en
  36. OECD TG No. 203. 2019. Fish, Acute Toxicity Test, OECD Guidelines for the Testing of Chemicals. Organisation for Economic Co-operation and Development. https://doi.org/10.1787/9789264069961-en
  37. Ong WJ, N Zheng and M Antonietti. 2021. Advanced nanomaterials for energy conversion and storage: Current status and future opportunities. Nanoscale 13:9904-9907. https://doi.org/10.1039/d1nr90103f
  38. Ortelli S, A Costa, I Zanoni, M Blosi, O Geiss, I Bianchi, D Mehn, F Fumagalli, G Ceccone, G Guerrini and L Calzolai. 2021. TiO2@ BSA nano-composites investigated through orthogonal multi-techniques characterization platform. Colloid Surf. B-Biointerfaces 207:112037. https://doi.org/10.1016/j.colsurfb.2021.112037
  39. Pakrashi S, S Dalai, TC Prathna, S Trivedi, R Myneni, AM Raichur, N Chandrasekaran and A Mukherjee. 2013. Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations. Aquat. Toxicol. 132:34-45. https://doi.org/10.1016/j.aquatox.2013.01.018
  40. Praetorius A, A Gundlach-Graham, E Goldberg, W Fabienke, J Navratilova, A Gondikas, R Kaegi, D Gunther, T Hofmann and VDK Frank. 2017. Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environ. Sci. Nano 4:307-314. https://doi.org/10.1039/c6en00455e
  41. Proquin H, C Rodriguez-Ibarra, CGJ Moonen, IM Urrutia Ortega, JJ Briede, TM de Kok, H van Loveren and YI Chirino. 2017. Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions. Mutagenesis 32:139-149. https://doi.org/10.1093/MUTAGE/GEW051
  42. Richter V, A Potthoff, W Pompe, M Gelinsky, H Ikonomidou, S Bastian, K Schirmer, S Scholz and J Hofinger. 2008. Evaluation of health risks of nano- and microparticles. Powder Metall. 51:8-9. https://doi.org/10.1179/174329008X286640
  43. Schneider J, M Matsuoka, M Takeuchi, J Zhang, Y Horiuchi, M Anpo and DW Bahnemann. 2014. Underst-anding TiO2 photocatalysis mechanisms and materials. Chem. Rev. 114:9919-9986. https://doi.org/10.1021/cr5001892
  44. Skocaj M, M Filipic, J Petkovic and S Novak. 2011. Titanium dioxide in our everyday life; Is it safe? Radiol. Oncol. 45:227-247. https://doi.org/10.2478/v10019-011-0037-0
  45. Su S, W Wu, J Gao, J Lu and C Fan. 2012. Nanomaterials-based sensors for applications in environmental monitoring. J. Mater. Chem. 22:18101-18110. https://doi.org/10.1039/C2JM33284A
  46. Tang T, Z Zhang and X Zhu. 2019. Toxic effects of TiO2 NPs on Zebrafish. Int. J. Environ. Res. Public Health 16:523. https://doi.org/10.3390/ijerph16040523
  47. Taurozzi JS, VA Hackley and M Wiesner. 2012a. Preparation of Nanoparticle Dispersions from Powdered Material Using Ultrasonic Disruption (Version 1.1). National Institute of Standards and Technology Special Publication. 1200-2. https://doi.org/10.6028/NIST.SP.1200-2
  48. Taurozzi JS, VA Hackley and M Wiesner. 2012b. Preparation of a Nanoscale TiO2 Aqueous Dispersion for Toxicological or Environmental Testing(Version 1.2). National Institute of Standards and Technology Special. Publication. 1200-3. https://doi.org/10.6028/NIST.SP.1200-3
  49. Taurozzi JS, VA Hackley and M Wiesner. 2012c. Preparation of Nanoscale TiO2 Dispersions in Biological Test Media for Toxicological Assessment(Version 1.1). National Institute of Standards and Technology Specical. Publication. 1200-4. https://doi.org/10.6028/NIST.SP.1200-4
  50. Valavanidis A, T Vlahogianni, M Dassenakis and M Scoullos. 2006. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol. Environ. Saf. 64:178-189. https://doi.org/10.1016/j.ecoenv.2005.03.013
  51. Venator. 2013. Product data sheet of HOMBITAN®FG. www.venatorcorp.com.
  52. Xiong D, T Fang, L Yu, X Sima and W Zhu. 2011. Effects of nanoscale TiO2, ZnO and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Sci. Total Environ. 409:1444-1452. https://doi.org/10.1016/j.scitotenv.2011.01.015
  53. Yoo JW, JS Cha, HR Kim, JW Pyo and YM Lee. 2019. Modulation of antioxidant defense system in the brackish water flea Diaphanosoma celebensis exposed to bisphenol A. Korean J. Environ. Biol. 37:73-81. https://doi.org/10.11626/KJEB.2019.37.1.072
  54. Yuan Y, Y Gao, L Mao and J Zhao. 2008. Optimisation of conditions for the preparation of β-carotene nanoemulsions using response surface methodology. Food Chem. 107:1300-1306. https://doi.org/10.1016/j.foo-dchem.2007.09.015
  55. Zhao X, S Wang, Y Wu, H You and L Lv. 2013. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat. Toxicol. 136:49-59. https://doi.org/10.1016/j.aquatox.2013.03.019
  56. Zhao Y, Z Wang, D Li, W Feng, X Bian and J Xu. 2019. Two PBDEs exposure inducing feeding depression and disorder of digestive and antioxidative system of Daphnia magna. Ecotoxicol. Environ. Saf. 176:279-287. https://doi.org/10.1016/j.ecoenv.2019.03.116
  57. Zhu X, L Zhu, Y Chen and S Tian. 2009. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J. Nanopart. Res. 11:67-75. https://doi.org/10.1007/s11051-008-9426-8