Acknowledgement
This research was supported by the Green New Deal 100 Promising Company 100 R&D Program (2MRC190) funded by the Ministry of SMEs and Startups (MSS, Korea).
References
- W. J. Joost, "Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering", JOM-J Miner. Metal M., Vol. 64, pp. 1032-1038, 2012. https://doi.org/10.1007/s11837-012-0424-z
- W. Zhang and J. Xu, "Advanced lightweight materials for Automobiles: A", Mater. Des., Vol. 221, pp. 110994(1)-110994(20), 2022. https://doi.org/10.1016/j.matdes.2022.110994
- S. Funke and P. Plotz, "A comparison of different means to increase daily range of electric vehicles - the potential of battery sizing increased vehicle efficiency and charging infrastructure", IEEE Vehicle Power and Propulsion Conf. (VPPC), Karlsruhe, pp. 1-6, 2014.
- M. Delogua, L. Zanchia, C.A. Dattiloa, and M. Pierini, "Innovative composites and hybrid materials for electric vehicles lightweight design in a sustainability perspective", Mater. Today Comm., Vol. 13, pp. 192-209, 2017. https://doi.org/10.1016/j.mtcomm.2017.09.012
- L. Nicoletti, A. Romano, A. Konig, P. Kohler, M. Heinrich, and M. Lienkamp, "An Estimation of the Lightweight Potential of Battery Electric Vehicles", Energies, Vol. 14, No. 15, pp. 4655(1)-4655(29), 2021. https://doi.org/10.3390/en14154655
- F. Liu, Z Fan, X, Liu, Y, Huang, and P. Jiang, "Effect of Surface Coating Strengthening on Humidity Resistance of Sodium Silicate Bonded Sand Cured by Microwave Heating", Mater. Manuf. Process, Vol. 31, pp. 1639-1642, 2016. https://doi.org/10.1080/10426914.2015.1117631
- L. Zhang, L. Zhang, and Y. Li, "Effect of kaolin on tensile strength and humidity resistance of a water-soluble potassium carbonate sand core", Res. Dev. China Foundry, Vol. 13, No. 1, pp. 15-21, 2016. https://doi.org/10.1007/s41230-016-5041-y
- S. Tu, F. Liu, G. Li, W. Jiang, X. Liu, and Z. Fan, "Fabrication and characterization of high-strength water-soluble composite salt core for zinc alloy die castings", Int. J. Adv. Manuf. Technol., Vol. 95, pp. 505-512, 2018. https://doi.org/10.1007/s00170-017-1208-y
- A. Shawky, S. M. El-Sheikh, M. N. Rashed, S. M. Abdo, and T. I. El-Dosoqy, "Exfoliated kaolinite nanolayers as an alternative photocatalyst with super activity", J. Environ. Chem. Eng., Vol. 7, p. 103174, 2019.
- T. Kristof, Z. Sarkadi, Z. Hato, and G. Rutkai, "Simulation study of intercalation complexes of kaolinite with simple amides as primary intercalation reagents", Comput. Mater. Sci., Vol. 143, pp. 118-125, 2018. https://doi.org/10.1016/j.commatsci.2017.11.010
- M. N. Niu and C. X. Guo, "Preparation of delaminated nano-kaolinite by intercalation of chemical assistants", Adv. Mater. Res., Vol. 11-12, pp. 441-444, 2006. https://doi.org/10.4028/www.scientific.net/AMR.11-12.441
- M. Valaskova, M. Rieder, V. Matejka, P. Capkova, and A. Sliva, "Exfoliation/delamination of kaolinite by low-temperature washing of kaolinite-urea intercalates", Appl. Clay Sci., Vol. 35, pp. 108-118, 2007. https://doi.org/10.1016/j.clay.2006.07.001