DOI QR코드

DOI QR Code

Ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages

  • Lu Deng (Key Laboratory for Damage Diagnosis of Engineering Structures of Hunan Province, Hunan University) ;
  • Min Zhu (Key Laboratory for Damage Diagnosis of Engineering Structures of Hunan Province, Hunan University) ;
  • Michael C.H. Yam (Department of Building and Real Estate, The Hong Kong Polytechnic University) ;
  • Ke Ke (Key Laboratory of New Technology for Construction of Cities in Mountain Area, School of Civil Engineering, Chongqing University) ;
  • Zhongfa Zhou (Beijing Institute of Architectural Design) ;
  • Zhonghua Liu (Zhejiang Jinggong Steel Building Group Co., Ltd.)
  • Received : 2022.03.13
  • Accepted : 2023.04.19
  • Published : 2023.06.10

Abstract

This paper investigates the ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages. The study is commenced by verifying a trilinear self-centring hysteretic model accounting for multiple yielding stages of steel frames equipped with self-centring fuses. Then, the seismic response of single-degree-of-freedom (SDOF) systems following the validated trilinear self-centring hysteretic law is examined by a parametric study using a near-fault earthquake ground motion database composed of 200 earthquake records as input excitations. Based on a statistical investigation of more than fifty-two (52) million inelastic spectral analyses, the effect of the post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio on the mean ductility demand of the system is examined in detail. The analysis results indicate that the increase of post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio reduces the ductility demands of the self-centring oscillators responding in multiple yielding stages. A set of empirical expressions for quantifying the ductility demands of trilinear self-centring hysteretic oscillators are developed using nonlinear regression analysis of the analysis result database. The proposed regression model may offer a practical tool for designers to estimate the ductility demand of a low-to-medium rise self-centring steel frame equipped with self-centring fuses progressing in the ultimate stage under near-fault earthquake motions in design and evaluation.

Keywords

Acknowledgement

This research is financially supported by the National Natural Science Foundation of China (Grant No. 52178111 and 51890902), Key Research and Development Program of Hunan Province (Project No. 2018NK2053) and Chinese National Engineering Research Centre for Steel Construction, The Hong Kong Polytechnic University (Project No. BBVW).

References

  1. Ahmadi, O., Ricles, J.M. and Sause, R. (2018), "Modeling and seismic collapse resistance study of a steel SC-MRF", Soil Dyn. Earthq. Eng., 113, 324-338. https://doi.org/10.1016/j.soildyn.2018.05.026.
  2. Auricchio, F. (2001), "A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model", Int. J. Plast., 17(7), 971-990. https://doi.org/10.1016/S0749-6419(00)00050-4.
  3. Chen, M.T. and Young, B. (2020a), "Tensile tests of cold-formed stainless steel tubes", J. Struct. Eng., 146(9), 04020165. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002738.
  4. Chen, M.T., Young, B., Martins, A.D., Camotim, D. and Dinis, P.B. (2020b), "Uniformly bent CFS lipped channel beams experiencing local-distortional interaction: Experimental investigation", J. Constr. Steel Res., 170, 106098. https://doi.org/10.1016/j.jcsr.2020.106098.
  5. Chen, M.T. and Young, B. (2020c), "Tests of cold-formed normal and high strength steel tubes under tension", Thin. Wall. Struct., 153, 106844. https://doi.org/10.1016/j.tws.2020.106844.
  6. Chen, M.T. and Young, B. (2020d), "Tests of cold-formed steel semi-oval hollow section members under eccentric axial load", J. Struct. Eng., 146(4), 04020027. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002468.
  7. Chen, M.T. and Young, B. (2020e), "Beam-column tests of cold-formed steel elliptical hollow sections", Eng. Struct., 210, 109911. https://doi.org/10.1016/j.engstruct.2019.109911.
  8. Chen, M.T. and Young, B. (2021a), "Numerical analysis and design of cold-formed steel elliptical hollow sections under combined compression and bending", Eng. Struct., 241, 112417. https://doi.org/10.1016/j.engstruct.2021.112417.
  9. Chen, M.T., Pandey, M. and Young, B. (2021b), "Mechanical properties of cold-formed steel semi-oval hollow sections after exposure to ISO-834 fire", Thin. Wall. Struct., 167, 108202. https://doi.org/10.1016/j.tws.2021.108202.
  10. Chen, M.T., Pandey, M. and Young, B. (2021c), "Post-fire residual material properties of cold-formed steel elliptical hollow sections", J. Constr. Steel Res., 183, 106723. https://doi.org/10.1016/j.jcsr.2021.106723.
  11. Chen, M.T., Chen, Y. and Young, B. (2023a), "Experimental investigation on cold-formed steel elliptical hollow section T-joints", Eng. Struct., 283, 115593. https://doi.org/10.1016/j.engstruct.2023.115593.
  12. Chen, M.T., Cai, A., Pandey, M., Shen, C., Zhang, Y., Hu, L. (2023b), "Mechanical properties of high strength steels and weld metals at arctic low temperature", Thin. Wall. Struct., 185, 110543. https://doi.org/10.1016/j.tws.2023.110543.
  13. Cheng, B., Huang, F., Duan, Y. and Chen, M.T. (2021), "Fatigue performance of bird-beak SHS gap K-joints under brace in-plane force", J. Struct. Eng., 147(11), 04021167. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003143.
  14. Chou, C.C. and Lai, Y.J. (2009), "Post-tensioned self-centering moment connections with beam bottom flange energy dissipators", J. Constr. Steel Res., 65(10), 1931-1941. https://doi.org/10.1016/j.jcsr.2009.06.002.
  15. Christopoulos, C., Filiatrault, A. and Folz, B. (2002), "Seismic response of self-centring hysteretic SDOF systems", Earthq. Eng. Struct. Dyn., 31(5). https://doi.org/10.1002/eqe.152.
  16. Dyanati, M., Huang, Q. and Roke, D. (2015), "Seismic demand models and performance evaluation of self-centering and conventional concentrically braced frames", Eng. Struct., 84, 368-381. https://doi.org/10.1016/j.engstruct.2014.11.036.
  17. Erochko, J., Christopoulos, C., Tremblay, R. and Choi, H. (2011), "Residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE 7-05", J. Struct. Eng., 137(5), 589-599. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000296.
  18. Fang, C., Zhong, Q.M., Wang, W., Hu, S.L. and Qiu, C.X. (2018a), "Peak and residual responses of steel moment-resisting and braced frames under pulse-like near-fault earthquakes", Eng. Struct., 177, 579-597. https://doi.org/10.1016/j.engstruct.2018.10.013.
  19. Fang, C., Yam, M.C.H., Chan, T.M., Wang, W., Yang, X. and Lin, X. (2018b), "A study of hybrid self-centring connections equipped with shape memory alloy washers and bolts", Eng. Struct., 164, 155-168. https://doi.org/10.1016/j.engstruct.2018.03.006.
  20. Fang, C., Wang, W., Ji, Y. and Yam, M.C.H. (2021), "Superior low-cycle fatigue performance of iron-based SMA for seismic damping application", J. Constr. Steel Res., 184, 106817. https://doi.org/10.1016/j.jcsr.2021.106817.
  21. FEMA No.273 and 274 (1997), NEHERP Provisions for the Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C, USA.
  22. Garlock, M.M., Ricles, J.M. and Sause, R. (2005), "Experimental studies of full-scale posttensioned steel connections", J. Struct. Eng., 131(3), 438-448. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(438).
  23. Gong, J.M., Tobush, H., Takata, K., Okumura, K. and Endo, M. (2002), "Cyclic superelastic deformation of TiNi shape-memory alloy", Mater. Sci. Forum., 394-395, 245-248. https://doi.org/10.4028/www.scientific.net/MSF.394-395.245.
  24. Guan, M., Liu, W., Lai, M.H., Du, H., Cui, J. and Gan, Y. (2019), "Seismic behavior of innovative composite walls with high-strength manufactured sand concrete", Eng. Struct., 195, 182-199. https://doi.org/10.1016/j.engstruct.2019.05.096.
  25. Hatzigeorgiou, G.D. (2010), "Behavior factors for nonlinear structures subjected to multiple near-fault earthquakes", Comput. Struct., 88(5-6), 309-321. https://doi.org/10.1016/j.compstruc.2009.11.006.
  26. Hatzigeorgiou, G.D., Papagiannopoulos, G.A. and Beskos, D.E. (2011), "Evaluation of maximum seismic displacements of SDOF systems from their residual deformation", Eng. Struct., 33(12), 3422-3431. https://doi.org/10.1016/j.engstruct.2011.07.006.
  27. He, X.Z., Chen, Y., Ke, K., Shao, T. and Yam, M.C.H. (2022), "Development of a connection equipped with fuse angles for steel moment resisting frames", Eng. Struct., 265, 114503. https://doi.org/10.1016/j.engstruct.2022.114503.
  28. Ho, J.C.M., Ou, X.L., Li, C.W., Song, W., Wang, Q. and Lai, M.H. (2021), "Uni-axial behaviour of expansive CFST and DSCFST stub columns", Eng. Struct., 237, 112193. https://doi.org/10.1016/j.engstruct.2021.112193.
  29. Ho, J.C.M., Liang, Y., Wang, Y.H., Lai, M.H., Huang, Z.C., Yang, D. and Zhang, Q.L. (2022), "Residual properties of steel slag coarse aggregate concrete after exposure to elevated temperatures", Constr. Build. Mater., 316, 125751. https://doi.org/10.1016/j.conbuildmat.2021.125751.
  30. Hu, S., Wang, W., Shahria Alam, M. and Ke, K. (2023), "Life-cycle benefits estimation of self-centering building structures", Eng. Struct., 284, 115982. https://doi.org/10.1016/j.engstruct.2023.115982.
  31. Iyama, J., Seo, C.Y., Ricles, J. and Sause, R. (2009), "Self-centering MRFs with bottom flange friction devices under earthquake loading", J. Constr. Steel Res., 65(2), 314-325. https://doi.org/10.1016/j.jcsr.2008.02.018.
  32. Ke, K. and Chen, Y. (2016a), "Seismic performance of MRFs with high strength steel main frames and EDBs", J. Constr. Steel Res., 126, 214-228. https://doi.org/10.1016/j.jcsr.2016.07.003.
  33. Ke, K., Chuan, G. and Ke, S. (2016b). "Seismic energy factor of self-centering systems subjected to near-fault earthquake ground motions", Soil Dyn. Earthq. Eng., 84, 169-173. https://doi.org/10.1016/j.soildyn.2016.02.011.
  34. Ke, K., Zhao, Q., Yam, M.C.H. and Ke, S. (2018), "Energy factors of trilinear SDOF systems representing damage-control buildings with energy dissipation fuses subjected to near-fault earthquakes", Soil Dyn. Earthq. Eng., 107, 20-34. https://doi.org/10.1016/j.soildyn.2017.12.023.
  35. Ke, K., Wang, W., Yam, M.C.H. and Deng, L. (2019), "Residual displacement ratio demand of oscillators representing HSSF-EDBs subjected to near-fault earthquake ground motions", Eng. Struct., 191, 598-610. https://doi.org/10.1016/j.engstruct.2019.04.054.
  36. Ke, K., Yam, M.C.H., Zhang, H., Lam, A.C.C. and Zhou, X.H. (2020), "High-strength steel frames with SMA connections in self-centring energy-dissipation bays: insights and a multimodal nonlinear static procedure", Smart Mater. Struct., 29(12), 125020. https://doi.org/10.1088/1361-665X/abc147.
  37. Ke, K., Yam, M.C.H., Zhou, X., Wang, F. and Fei, X. (2021), "Energy factor of high-strength-steel frames with energy dissipation bays under repeated near-field earthquakes", Steel Compos. Struct., 40(3), 369-387. https://doi.org/10.12989/scs.2021.40.3.369.
  38. Ke, K., Zhou, X., Zhang, H., Yam, M.C.H., Guo, L. and Chen, Y. (2022a), "Performance-based-plastic-design of damage-control steel MRFs equipped with self-centring energy dissipation bays", J. Constr. Steel Res., 192, 107230. https://doi.org/10.1016/j.jcsr.2022.107230.
  39. Ke, K., Zhou, X., Zhu, M., Yam, M.C.H., Wang, Y. and Zhang, H. (2022b), "Seismic evaluation of industrial steel moment resisting frames with shape memory alloys using performance-spectra-based method", J. Build. Eng., 48, 103950. https://doi.org/10.1016/j.jobe.2021.103950.
  40. Ke, K., Zhou, X., Zhu, M., Yam, M.C.H. and Zhang, H. (2023a), "Seismic demand amplification of steel frames with SMAs induced by earthquake sequences", J. Constr. Steel Res., 207, 107929. https://doi.org/10.1016/j.jcsr.2023.107929.
  41. Ke, K., Yam, M.C.H., Zhang, P., Shi, Y., Li, Y. and Liu, S. (2023b), "Self-centring damper with multi-energy-dissipation mechanisms: Insights and structural seismic demand perspective", J. Constr. Steel Res., 204, 107837. https://doi.org/10.1016/j.jcsr.2023.107837.
  42. Kim, H.J. and Christopoulos, C. (2008), "Friction damped posttensioned self-centering steel moment-resisting frames", J. Struct. Eng., 134(11), 1768-1779. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:11(1768).
  43. Lai, M.H., Li, C., Ho, J.C.M. and Chen, M.T. (2020), "Experimental investigation on hollow-steel-tube columns with external confinements", J. Constr. Steel Res., 166, 105865. https://doi.org/10.1016/j.jcsr.2019.105865.
  44. Lai, M.H., Binhowimal, S., Griffith, A., Hanzic, L., Wang, Q., Chen, Z. and Ho, J.C.M. (2021), "Shrinkage design model of concrete incorporating wet packing density", Constr. Build. Mater., 280, 122448. https://doi.org/10.1016/j.conbuildmat.2021.122448.
  45. Lai, M.H., Huang, Z., Wang, C., Wang, Y., Chen, L. and Ho, J.C.M. (2022a), "Effect of fillers on the behaviour of low carbon footprint concrete at and after exposure to elevated temperatures", J. Build. Eng., 51, 104117. https://doi.org/10.1016/j.jobe.2022.104117.
  46. Lai, M.H., Wu, K., Ou, X., Zeng, M., Li, C. and Ho, J.C.M. (2022b), "Effect of concrete wet packing density on the uni-axial strength of manufactured sand CFST columns", Struct. Concrete., 23(4), 2615-2629. https://doi.org/10.1002/suco.202100280.
  47. Lai, M.H., Wu, K.J., Cheng, X., Ho, J.C.M., Wu, J.P., Chen, J.H. and Zhang, A.J. (2022c), "Effect of fillers on the behaviour of heavy-weight concrete made by iron sand", Constr. Build. Mater., 332, 127357. http://dx.doi.org/10.1016/j.conbuildmat.2022.127357.
  48. Lai, M.H., Wu, K.J., Ou, X.L., Zeng, M.R., Li, C.W., Ho, J.C.M. (2022d), "Effect of concrete wet packing density on the uni-axial strength of manufactured sand CFST columns", Struct. Concrete, 23(4), 2615-262. https://doi.org/10.1002/suco.202100280.
  49. Lai, M.H., Lin, Y.H., Jin, Y.Y., Fei, Q., Wang, Z.C. and Ho, J.C.M. (2023), "Uni-axial behaviour of steel slag concrete-filled-steel-tube columns with external confinement", Thin. Wall. Struct., 185, 110562. https://doi.org/10.1016/j.tws.2023.110562.
  50. Liu, L., Zhao, J. and Li, S. (2018), "Nonlinear displacement ratio for seismic design of self-centering buckling-restrained braced steel frame considering trilinear hysteresis behavior", Eng. Struct., 158, 199-222. https://doi.org/10.1016/j.engstruct.2017.12.026.
  51. Luo, Z., Shi, Y., Xue, X., Zhou, X.H. and Yao, X. (2023a), "Nonlinear patch resistance performance of hybrid titanium-clad bimetallic steel plate girder with web opening", J. Build. Eng., 65,105703. https://doi.org/10.1016/j.jobe.2022.105703.
  52. Luo, Z., Shi, Y., Xue, X., Xu, L. and Zhang, H. (2023b), "Design recommendations on longitudinally stiffened titanium-clad bimetallic steel plate girder", J. Constr. Steel Res., 201, 107748. https://doi.org/10.1016/j.jcsr.2022.107748.
  53. Macrae, G.A. and Kawashima, K. (1997), "Post-earthquake residual displacements of bilinear oscillators", Earthq. Eng. Struct. Dyn., 26(7), 701-716. https://doi.org/10.1002/(SICI)1096-9845(199707)26:7<701::AID-EQE671>3.0.CO;2-I.
  54. Miller, D.J. (2012), "Development and experimental validation of self-centering buckling-restrained braces with shape memory alloy", Eng. Struct., 40, 288-298. https://doi.org/10.1016/j.engstruct.2012.02.037.
  55. Ocel, J., DesRoches, R., Leon, R.T., Hess, W.G., Krumme, R. and Hayes, J.R. (2011), "Steel beam-column connections using shape memory alloys", J. Struct. Eng., 130(5), 732-740. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(732).
  56. Pacific Earthquake Engineering Research Center, https://peer.berkeley.edu/.
  57. Pettinga, D., Christopoulos, C., Parnpanin, S. and Priestley, N. (2007), "Effectiveness of simple approaches in mitigating residual deformations in buildings", Earthq. Eng. Struct. Dyn., 36(12), 1763-1783. https://doi.org/10.1002/eqe.717.
  58. Preciado, A., Ramirez-Gayta, A., Gutierrez, N., Vargas, D., Falcon, J.M. and Ochoa, G. (2018), "Nonlinear earthquake capacity of slender old masonry structures prestressed with steel, FRP and NiTi SMA tendons", Steel Compos. Struct., 26(2). https://doi.org/10.12989/scs.2018.26.2.213.
  59. Qiu, C.X. and Zhu, S. (2016), "High-mode effects on seismic performance of multi-story self-centering braced steel frames", J. Constr. Steel Res., 119, 133-143. https://doi.org/10.1016/j.jcsr.2015.12.008.
  60. Qiu, C.X. and Zhu, S. (2017), "Performance-based seismic design of self-centering steel frames with SMA-based braces", Eng. Struct., 130, 67-82. https://doi.org/10.1016/j.engstruct.2016.09.051.
  61. Ren, F.M., Tian, S.Y., Gong, L., Wu, J.L., Mo, J.X., Lai, C.L. and Lai, M.H. (2023), "Seismic performance of a ring beam joint connecting FTCES column and RC/ESRC beam with NSC," J. Build. Eng., 63, 105366. https://doi.org/10.1016/j.jobe.2022.105366.
  62. Ricles, J.M., Sause, R., Garlock, M.M. and Zhao, C. (2001), "Posttensioned seismic-resistant connections for steel frames", J. Struct. Eng., 127(2), 113-121. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(113).
  63. Sepulveda, J., Boroschek, R., Herrera, R., Moroni, O. and Sarrazin, M. (2008), "Steel beam-column connection using copper-based shape memory alloy dampers", J. Constr. Steel Res., 64(4), 429-435. https://doi.org/10.1016/j.jcsr.2007.09.002.
  64. Shi, Y., Wang, J., Zhou, X.H. and Xue, X. (2023), "Post-fire properties of stainless-clad bimetallic steel produced by explosive welding process", J. Constr. Steel Res., 201, 107690. https://doi.org/10.1016/j.jcsr.2022.107690.
  65. Silwal, B. and Ozbulut, O.E. (2018), "Aftershock fragility assessment of steel moment frames with self-centering dampers", Eng. Struct., 168, 12-22. https://doi.org/10.1016/j.engstruct.2018.04.071.
  66. Simulia, D.C.S. (2011), Abaqus 6.11 Analysis User's Manual, Abaqus 6.11 Documentation.
  67. Sultana, P. and Youssef, M.A. (2016), "Seismic performance of steel moment resisting frames utilizing superelastic shape memory alloys", J. Constr. Steel Res., 125, 239-251. https://doi.org/10.1016/j.jcsr.2016.06.019.
  68. Tamai, H. and Kitagawa, Y. (2002), "Pseudoelastic behavior of shape memory alloy wire and its application to seismic resistance member for building", Compos. Mater. Sci., 25(1-2), 218-227. https://doi.org/10.1016/S0927-0256(02)00266-5.
  69. TableCurve 3D (2013), Systat Software, Inc., USA. https://systatsoftware.com/products/tablecurve-3d/.
  70. Wang, L., Sun, J., Ding, T., Liang, Y., Ho, J.C.M. and Lai, M.H. (2022), "Manufacture and behaviour of innovative 3D printed auxetic composite panels subjected to low-velocity impact load", Struct., 38, 910-933. https://doi.org/10.1016/j.istruc.2022.02.033.
  71. Wang, F., Hua, J., Xue, X., Wang, N., Yan, F. and Feng, D. (2023), "Effect of superfine cement modification on properties of coral aggregate concrete", Mater., 16(3), 1103. https://doi.org/10.3390/ma16031103.
  72. Yam, M.C.H., Ke, K., Huang, Y., Zhou, X.H. and Liu, Y. (2022), "A study of hybrid self-centring beam-to-beam connections equipped with shape-memory-alloy-plates and washers", J. Constr. Steel Res., 198, 107526. https://doi.org/10.1016/j.jcsr.2022.107526.
  73. Yi, S., Chen, M.T. and Young, B. (2023a), "Design of concrete-filled cold-formed steel elliptical stub columns", Eng. Struct., 276, 115269. https://doi.org/10.1016/j.engstruct.2022.115269.
  74. Yi, S., Chen, M.T. and Young, B. (2023b), "Stub column behavior of concrete-filled cold-formed steel semi-oval sections", J. Struct. Eng., 149(3), 04023001. https://doi.org/10.1016/j.engstruct.2022.115269.
  75. Zhang, C., Steele, T.C. and Wiebe, L.D.A. (2018), "Design-level estimation of seismic displacements for self-centering SDOF systems on stiff soil", Eng. Struct., 177, 431-443. https://doi.org/10.1016/j.engstruct.2018.09.067.
  76. Zhang, H.Y., Zhou, X.H., Ke, K., Yam, M.C.H., He, X. and Li, H. (2023), "Self-centring hybrid-steel-frames employing energy dissipation sequences: Insights and inelastic seismic demand model", J. Build. Eng., 63, 105451. https://doi.org/10.1016/j.jobe.2022.105451.
  77. Zhang, P., Yam, M.C.H., Ke, K., Zhou, X.H. and Chen, Y. (2022), "Steel moment resisting frames with energy-dissipation rocking columns under near-fault earthquakes: Probabilistic performance-based-plastic-design for the ultimate stage", J. Build. Eng., 54, 104625. https://doi.org/10.1016/j.jobe.2022.104625.
  78. Zhou, Z.Y., Chen, Y., Yam, M.C.H., Ke, K. and He, X. (2023), "Experimental investigation of a high strength steel frame with curved knee braces subjected to extreme earthquakes", Thin. Wall. Struct., 185, 110596. https://doi.org/10.1016/j.tws.2023.110596.
  79. Zhuang, X., Liang, Y., Ho, J.C.M., Wang, Y.H., Lai, M.H., Li, X., Xu, Z. and Xu, Y. (2022), "Post-fire behavior of steel slag fine aggregate concrete", Struct. Concrete., 23(6), 3672-3695. https://doi.org/10.1002/suco.202100677.
  80. Zhou, X.H., Chen, Y., Ke, K., Yam, M.C.H. and Li, H. (2021a), "Hybrid steel staggered truss frame (SSTF): A probabilistic spectral energy modification coefficient surface model for damage-control evaluation and performance insights", J. Build. Eng., 45, 103556. https://doi.org/10.1016/j.jobe.2021.103556.
  81. Zhou, X.H., Ke, K., Yam, M.C.H., Zhao, Q., Huang, Y. and Di, J. (2021b), "Shape memory alloy plates: Cyclic tension-release performance, seismic applications in beam-to-column connections and a structural seismic demand perspective", Thin. Wall. Struct., 167, 108158. https://doi.org/10.1016/j.tws.2021.108158.
  82. Zhou, X.H., Zhang, H., Ke, K., Guo, L. and Yam, M.C.H. (2021c), "Damage-control steel frames equipped with SMA connections and ductile links subjected to near-field earthquake motions: A spectral energy factor model", Eng. Struct., 239, 112301. https://doi.org/10.1016/j.engstruct.2021.112301.
  83. Zhou, X.H., Chen, Y., Ke, K.,Yam, M.C.H. and Li, H. (2022), "Hybrid steel staggered truss frame (SSTF): A probabilistic spectral energy modification coefficient surface model for damage-control evaluation and performance insights", J. Build. Eng., 45, 103556. https://doi.org/10.1016/j.jobe.2021.103556.
  84. Zhou, X.H., Huang, Y., Ke, K., Yam, M.C.H., Zhang, H.Y. and Fang, H. (2023a), "Large-size shape memory alloy plates subjected to cyclic tension: Towards novel self-centring connections in steel frames", Thin. Wall. Struct., 185, 110591. https://doi.org/10.1016/j.tws.2023.110591.
  85. Zhou, X.H., Tan, Y., Ke, K., Yam, M.C.H., Zhang, H. and Xu, J. (2023b), "An experimental and numerical study of brace-type long double C-section steel slit dampers", J. Build. Eng., 64, 105555. https://doi.org/10.1016/j.jobe.2022.105555.
  86. Zhou, Y., Song, G. and Tan, P. (2019), "Hysteretic energy demand for self-centering SDOF systems", Soil Dyn. Earthq. Eng., 125, 105703. https://doi.org/10.1016/j.soildyn.2019.105703.