DOI QR코드

DOI QR Code

Designing of the Beheshtabad water transmission tunnel based on the hybrid empirical method

  • Mohammad Rezaei (Department of Mining Engineering, Faculty of Engineering, University of Kurdistan) ;
  • Hazhar Habibi (Department of Mining Engineering, Faculty of Engineering, University of Kurdistan)
  • Received : 2022.10.14
  • Accepted : 2023.04.25
  • Published : 2023.06.10

Abstract

Stability analysis and support system estimation of the Beheshtabad water transmission tunnel is investigated in this research. A combination approach based on the rock mass rating (RMR) and rock mass quality index (Q) is used for this purpose. In the first step, 40 datasets related to the petrological, structural, hydrological, physical, and mechanical properties of tunnel host rocks are measured in the field and laboratory. Then, RMR, Q, and height of influenced zone above the tunnel roof are computed and sorted into five general groups to analyze the tunnel stability and determine its support system. Accordingly, tunnel stand-up time, rock load, and required support system are estimated for five sorted rock groups. In addition, various empirical relations between RMR and Q i.e., linear, exponential, logarithmic, and power functions are developed using the analysis of variance (ANOVA). Based on the significance level (sig.), determination coefficient (R2) and Fisher-test (F) indices, power and logarithmic equations are proposed as the optimum relations between RMR and Q. To validate the proposed relations, their results are compared with the results of previous similar equations by using the variance account for (VAF), root mean square error (RMSE), mean absolute percentage error (MAPE) and mean absolute error (MAE) indices. Comparison results showed that the accuracy of proposed RMR-Q relations is better than the previous similar relations and their outputs are more consistent with actual data. Therefore, they can be practically utilized in designing the tunneling projects with an acceptable level of accuracy and reliability.

Keywords

Acknowledgement

The authors are interested to express thier genuine gratitude to the Beheshtabad tunnel project teams for their cooperation in data preparation.

References

  1. Abad, J., Celada, B., Chacon, E., Gutierrez, V. and Hidalgo, E. (1983), "Application of geomechanical classification to predict the convergence of coal mine galleries and to design their supports", 5th ISRM Congress, One Petro.
  2. Abdullatif, O. (2010), "Geomechanical properties and rock mass quality of the carbonate Rus formation, Dammam dome, Saudi Arabia", Arab. J. Sci. Eng., 35(2), 174-197.
  3. Aksoy, C.O., Uyar, G.G., Posluk, E., Ogul, K., Topal, I. and Kucuk, K. (2016), "Non-deformable support system application at tunnel-34 of Ankara-Istanbul high speed railway project", Struct. Eng. Mech., 58(5), 869-886. https://doi.org/10.12989/sem.2016.58.5.869.
  4. Al-Harthi, A.A. (1994), "Application of CSIR and NGI classification systems along tunnel no. 3 at Al-Dela Descent, Asir Province,Saudi Arabia", Engineering Geology Special Publication, 323-323.
  5. Asadizadeh, M. and Rezaei, M. (2021), "Surveying the mechanical response of non-persistent jointed slabs subjected to compressive axial loading utilising GEP approach", Int. J. Geotech. Eng., 15(10), 1312-1324. https://doi.org/10.1080/19386362.2019.1596610.
  6. Baczynski, N.R.P. (1983), "Application of various rock mass classifications to unsupported openings at Mount Isa, Queensland: A case study", Proceedings of the 3rd Aus-NZ Conf on Geomech, 2, New Zealand Inst. Eng., Wellington.
  7. Barton, N. (1995), "The influence of joint properties in modelling jointed rock masses", 8th ISRM Congress, Tokyo, Japan.
  8. Barton, N. (2002), "Some new Q-value correlations to assist in site characterisation and tunnel design", Int. J. Rock Mech. Min. Sci., 39(2), 185-216. https://doi.org/10.1016/S1365-1609(02)00011-4.
  9. Barton, N., Lien, R. and Lunde, J. (1974), "Engineering classification of rock masses for the design of tunnel support", Rock Mech., 6(4), 189-236. https://doi.org/10.1007/BF01239496
  10. Bieniawski, Z.T. (1973), "Engineering classification of jointed rock masses", Civil Eng. Siviele Ingenieurswese, 15(12), 335-343.
  11. Bieniawski, Z.T. (1989), Engineering Rock Mass Classifications, Wiley, New York.
  12. Bieniawski, Z.T. (1993), "Classification of rock masses for engineering: The RMR system and future trends", Comprehensive Rock Engineering, Ed. Hudson, J.A., Volume 3, Pergamon Press, Oxford, New York.
  13. Cameron-Clarke, I. and Budavari, S. (1981), "Correlation of rock mass classification parameters obtained from borecore and in-situ observations", Eng. Geol., 17(1-2), 19-53. https://doi.org/10.1016/0013-7952(81)90019-3.
  14. Castro Caicedo, A.D.J. and Perez Perez, D.M. (2013), "Correlation between the RMR and Q Geomechanical Classifications at" LA LINEA" Exp, pratory Tunnel, Colombian Centeral Andes", Boletin de Ciencias de la Tierra, 34, 42-50.
  15. Castro-Fresno, D., Diego-Carrera, R., Ballester-Munoz, F. and Alvarez-Garcia, J. (2010), "Correlation between Bieniawski's RMR and Barton's Q index in Low-Quality soils", Revista de la Construccion, 9(1), 107-119. https://doi.org/10.4067/S0718-915X2010000100012
  16. Celada Thamames, B. (1993), "Fourteen years of experience on rock bolting in Spain", Proceedings International Symposium on Rock Bolting, Abisko.
  17. Choquet, P. and Hadjigogiu, J. (1993), "Design of support for underground excavations". Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. 4, Pergamon Press, Oxford.
  18. Cosar, S. (2004), "Application of rock mass classification systems for future support design of the Dim tunnel near Alanya", MSc Thesis in Mining Engineering, Middle East Technical University, Ankara, Turkey.
  19. Ebrahimabadi, A. and Afradi, A. (2019), "Optimum selection of tunnel boring machine by using fuzzy analytical hierarchy process: A case study of Beheshtabad tunnel", Int. Trans. J. Eng. Manage. Appl. Sci. Technol., 10(3), 445-452.
  20. El-Naqa, A. (1994), "Rock mass characterisation of Wadi Mujib dam site, Central Jordan", Eng. Geol., 38(1-2), 81-93. https://doi.org/10.1016/0013-7952(94)90026-4.
  21. Hashemi, M., Moghaddas, S. and Ajalloeian, R. (2010), "Application of rock mass characterization for determining the mechanical properties of rock mass: A comparative study", J. Rock Mech. Geotech. Eng., 43(3), 305-320. https://doi.org/10.1007/s00603-009-0048-y.
  22. Hassanpour, J., Saljooghi Khoshkar, A., Ghasemi Farasani, M. and Hashemnejad, A. (2022), "Investigating the relationships between rock mass classification systems based on data from mechanized tunneling projects in Iran", Bull. Eng. Geol. Environ., 81, 147. https://doi.org/10.1007/s10064-022-02641-y.
  23. Jiang, W., Wang, Y., Yang, J. and Zhang, Z. (2023), "Surrounding rock quality evaluation and application development for highway tunnel based on engineering applicability", Bull Eng Geol Environ., 82, 115. https://doi.org/10.1007/s10064-023-03149-9.
  24. Kaiser, P.K., MacKay, C. and Gale, A.D. (1986), "Evaluation of rock classifications at B. C. rail tumbler ridge tunnels", Rock Mech. Rock Eng., 19, 205-234. https://doi.org/10.1007/BF01039996.
  25. Kaya, A. and Bulut, F. (2019), "Geotechnical studies and primary support design for a highway tunnel: a case study in Turkey", Bull. Eng. Geol. Environ., 78, 6311-6334. https://doi.org/10.1007/s10064-019-01529-8.
  26. Kumar, N., Samadhiya, N.K. and Anbalagan, R. (2004), "Application of rock mass classification systems for tunneling in Himalaya, India", Int. J. Rock Mech. Min. Sci., 41, 852-857. https://doi.org/10.1016/j.ijrmms.2004.03.147.
  27. Laderian, A. and Abaspoor, M.A. (2012), "The correlation between RMR and Q systems in parts of Iran", Tunn. Undergr. Space Technol., 27(1), 149-158. https://doi.org/10.1016/j.tust.2011.06.001.
  28. Lauffer, H. (1958), "Gebirgsklassifizierung fur den Stollenbau", Geol. Bauwesen. 24(1), 46-51.
  29. Lu, H., Gutierrez, M. and Kim, E. (2022), "Empirical approach for reliability evaluation of tunnel excavation stability using the Q rock mass classification system", Undergr. Space, 7, 862-881. https://doi.org/10.1016/j.undsp.2022.01.001.
  30. Lu, H., Kim, E. and Gutierrez, M. (2022), "A probabilistic Q-system using the Markov chain to predict rock mass quality in tunneling", Comput Geotech., 145, 104689. https://doi.org/10.1016/j.compgeo.2022.104689.
  31. Majdi, A. and Rezaei, M. (2013), "Application of artificial neural networks for predicting the height of destressed zone above the mined panel in longwall coal mining", American Rock Mechanics Association (ARMA 13-605), the 47th US Rock Mechanics/Geomechanics Symposium held in San Francisco, CA, USA.
  32. Mohammadi, M. (2021), "Development of an optimal experimental model for predicting rock mass rating based on tunneling quality index", Int. J. Rock Mech. Min. Sci., 140, 104602. https://doi.org/10.1016/j.ijrmms.2020.104602.
  33. Moreno Tallon, E. (1980), "Application de las classificaciones geomechnicas a los tuneles de parjares, II Cursode sostenimientos activosen galeriasy tunnels", Foundation Gomez-Parto, Madrid.
  34. Palmstrom, A. and Broch, E. (2006), "Use and misuse of rock mass classification systems with particular reference to the Q-system", Tunn. Undergr. Space Technol., 21(6), 575-593. https://doi.org/10.1016/j.tust.2005.10.005.
  35. Rafiee, R., Ataei, M. and Kamali, M. (2013), "Tunnels stability analysis using binary and multinomial logistic regression (LR)", J. Geol. Min. Res., 5(4), 97-107. https://doi.org/10.5897/JGMR2013.0176.
  36. Rajabi, M., Rahmannejad, R. and Rezaei, M. (2021), "Studying the deformation and stability of rock mass surrounding the power station caverns using NA and GEP models", Struct. Eng. Mech., 79(1), 35-50. https://doi.org/10.12989/sem.2021.79.1.035.
  37. Rajabi, M., Rahmannejad, R., Rezaei, M. and Ganjalipour, K. (2017), "Evaluation of the maximum horizontal displacement around the power station caverns using artificial neural network", Tunn. Undergr. Space Technol., 64, 51-60. https://doi.org/10.1016/j.tust.2017.01.010.
  38. Ranasooriya, J. and Nikraz, H. (2009), "Reliability of the linear correlation of rock mass rating (RMR) and tunnelling quality index (Q)", Aust. Geomech. J., 44(2), 47-54.
  39. Rezaei, M. (2018), "Indirect measurement of the elastic modulus of intact rocks using the Mamdani fuzzy inference system", Measure., 129, 319-331. https://doi.org/10.1016/j.measurement.2018.07.047.
  40. Rezaei, M. (2019), "Forecasting the stress concentration coefficient around the mined panel using soft computing methodology", Eng. Comput., 35, 451-466. https://doi.org/10.1007/s00366-018-0608-4.
  41. Rezaei, M. (2020), "Feasibility of novel techniques to predict the elastic modulus of rocks based on the laboratory data", Int. J. Geotech. Eng., 14(1), 25-34. https://doi.org/10.1080/19386362.2017.1397873.
  42. Rezaei, M. and Latifi, S. (2019). "Development of a new empirical relation between RMR and Q rock mass classification systems", Iran. J. Eng. Geol., 12(2), 43-54.
  43. Rezaei, M. and Rajabi, M. (2018), "Vertical displacement estimation in roof and floor of an underground powerhouse cavern", Eng. Fail. Anal., 90, 290-309. https://doi.org/10.1016/j.engfailanal.2018.03.010.
  44. Rezaei, M. and Rajabi, M. (2021), "Assessment of plastic zones surrounding the power station cavern using numerical, fuzzy and statistical models", Eng. Comput., 37, 1499-1518. https://doi.org/10.1007/s00366-019-00900-3.
  45. Rutledge, J. and Preston, R. (1978), "Experience with engineering classifications of rock", Proc. Int. Tunnelling Sym, Tokyo,.
  46. Sadeghi, S., Sharifi Teshnizi, E. and Ghoreishi, B. (2020), "Correlations between various rock mass classification/characterization systems for the Zagros tunnel-W Iran", J. Mount. Sci., 17(7), 1790-1806. https://doi.org/10.1007/s11629-019-5665-7.
  47. Sari, D. and Pasamehmetoglu, A.G. (2004), "Proposed support design, Kaletepe tunnel Turkey", Eng. Geol., 72, 201-216. https://doi.org/10.1016/j.enggeo.2003.08.003.
  48. Sayeed, I. and Khanna, R. (2015), "Empirical correlation between RMR and Q systems of rock mass classification derived from Lesser Himalayan and Central crystalline rocks", International Conference on "Engineering Geology in New Millennium, New Delhi, India.
  49. Senra, K. (2016), "Correlations between geomechanical properties to amphibolites and schists from south of Minas Gerais state, Brazil", MSc Thesis in Civil Engineering, Universidade Federal de Vicosa, Vicosa, Brazil.
  50. Soufi, A., Bahi, L., Ouadif, L. and Eddine Kissai, J. (2018), "Correlation between rock mass rating, Q-system and rock mass index based on field data", MATEC Web Conf., 149, 02030. https://doi.org/10.1051/matecconf/201814902030.
  51. Su, Y., Su, Y., Zhao, M. and Vlachopoulos, N. (2021), "Tunnel stability analysis in weak rocks using the convergence confinement method", Rock Mech. Rock Eng., 54, 559-582. https://doi.org/10.1007/s00603-020-02304-y.
  52. Sunwoo, C. and Hwang, S. (2001), "Correlation of rock mass classification methods in Korean rock mass", ISRM International Symposium-2nd Asian Rock Mechanics Symposium, Beijing, China, Balkema.
  53. Tian, Z., Liu, J., Wang, X., Liu, L., Lv, X. and Zhang, X. (2019), "Deformation and failure mechanism exploration of surrounding rock in huge underground cavern", Struct. Eng. Mech., 72(2), 275-291. https://doi.org/10.12989/sem.2019.72.2.275.
  54. Tugrul, A. (1998), "The application of rock mass classification systems to underground excavation in weak limestone, Ataturk dam, Turkey", Eng. Geol., 50(3-4), 337-345. https://doi.org/10.1016/S0013-7952(98)00034-9.
  55. Udd, J. E. and Wang, H.A. (1985), "A comparison of some approaches to the classification of rock mass for geotechnical purposes", Proceedings 25th U.S Symposium on Rock Mechanics, Rapid City, SD, Balkema, Rotterdam.
  56. Wu, A., Zhao, W., Zhang, Y. and Fu, X. (2023), "A detailed study of the CHN-BQ rock mass classification method and its correlations with RMR and Q system and Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 162, 105290. https://doi.org/10.1016/j.ijrmms.2022.105290.