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A REMARK ON STATISTICAL MANIFOLDS WITH TORSION
HwaJeEoNG KiM

ABSTRACT. Consider a Riemannian manifold M equipped with a metric g. In this
article, we study a notion for statistical manifolds (M, g, V), which can have a non-
zero torsion, abbreviated to SMT. Then it turns out that the tensor fields Vg and
Vg obtained from two different SMT-connections are different.

1. Introduction

Let M be a manifold with a metric g. Given a linear connection V there exists a
unique connection V* such that

d(g(X,Y)) = g(VX,Y) + g(X,V"Y)
and we then say that V, V* are dual connections with respect to the metric g.

A statistical manifold can be defined using the notion of dual connections, that is,
a manifold (M, g, V, V*) satisfying

™V =T =0
where the torsion of V is given by
TV(X,Y)=VxY - VyX — [X,Y].

There are a few equivalent ways in which statistical manifolds have been introduced;
for details we refer to [1,3,7,11].

In this article, we consider statistical manifolds whose torsions are not necessarily
zero. We will use a notion of ”statistical manifolds admitting torsion” as introduced
in [6] and abreviate it as "SMT”.

The difference between a linear connection V and the Levi-Civita connection VY
is a (2, 1)-tensor field denoted by A, that is

(1) VxY = V%Y + A(X,Y).
The notation A is also used for the (3,0)-tensor defined by
AX,Y,Z) = g(A(X,Y), Z).

In [5], given a SMT (M,g,V) with V = V9 + A an equivalent condition for the
difference tensor A is computed, see (8). In this article, we will consider the space
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of A satisfying this condition and denote the space by SM7T. We also consider the
symmetric space of A° consisting of (3, 0)-tensor fields A which are symmetric with
respect to the second and third variables.

In the main Theorem, we will then construct a bijection between SM7T and A°.
Here we observe that A° is actually the space of Vg’s where (M, g, V) is a SMT, so

we conclude that Vg # Vg for two different SMT-connections V and V.

2. Preliminaries

Let (M, g) be a Riemannian manifold and I'(M), I'*(M) the set of sections of the
tangent bundle T'M, T* M, respectively.

A linear connection V is then a map
V:I'(M)eT'(M) - T'(M)
with some properties and gives a way how to transport a vector field along a direction.

A metric connection V is a linear connection, which gives isometries between tan-
gent spaces by parallel transport, that is

The condition (2) is equivalent to Vg = 0, since for (2,0)- tensor field g
(Vyvg)(X,Y) =V(9(X,Y)) = g(VyX,Y) = g(X, VyY).

The Levi-Civita connection, denoted by V¥, is the unique metric connection with
torsion 1" = 0.

The difference between a linear connection V and the Levi-Civita connection V9
is a (2, 1)-tensor (field) A, that is, for any tangent vector fields X,Y € I'(M),

VxY = V%Y + A(X,Y).
Using the same notation, a (3, 0)-tensor A is defined by
A(X,Y. Z) = (A(X,Y), 2).

We now consider the case where isometries between tangent spaces are obtained by
parallel transports with respect to two connections V, V* as follows.

DEFINITION 2.1 (Dual Connections). For a linear connection V, the dual connec-
tion V* of V with respect to ¢ is defined by

Z(9(X,Y)) = g(VzX,Y) + g(X,V3Y)).
By the expression (1) let
(3) VxY = VI4+AX,)Y)
(4) VY = VI+A(X)Y).
We can then easily check the following.

LEMMA 2.2. Given a linear connection V and its dual connection V* defined as
above, the following equality holds:

(5) (A(Z,X),Y) + (X, A*(Z,Y)) = A(Z,X,Y) + A*(Z,Y, X) = 0.

So, a linear connection V has a unique dual connection V*
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3. Statistical manifolds admitting torsion

A statistical manifold in a classical sense is a torsion-free manifold with some
properties.

In [6] a notion for generalized statistical manifolds is introduced. There are some
well-known equivalent properties of these statistical manifolds. In this article, we take
the following properties as definitions.

DEFINITION 3.1. [2,3,6,8§]
(i) A Riemannian manifold (M, g, V) is a statistical manifold if
(6) (Vxg)(Y, Z) = (Vyg)(X, Z) = 0,

for X,Y,Z € T'(TM).
(ii) A Riemannian manifold (M, g, V) is a statistical manifold admitting torsion,
(SMT) for short, if

(7) (Vxg)(Y,Z) = (Vyg)(X, Z) = —g(TV(X,Y), Z),
for X,Y,Z € T(TM), where TV is the torsion tensor of V.
Considering the difference tensor field A as in (3), we obtain the following result.

PROPOSITION 3.2. [5,8] Given a Riemannian manifold (M,g,V) the following
conditions are equivalent.

(i) (M, g,V,V*) is a SMT.
(ii) Let V = V9 + A. Then it holds

(8) AX,)Y,Z) = A(Z,Y,X) for X,Y,Z € T(TM).
(iii) TV = 0.

Here we note that a statistical manifold (M, g, V,V*) in a classical sense is the
manifold with 7V = TV" = 0.

We consider the (3, 0)- tensor field A as an element of @*T'M, identifying TM with
TM*. Then by Proposition 3.2 (i7), for the set of SMT’s we can consider a space as
follows:

SMT ={A € @®TM|A(X,Y,Z) = A(Z,Y,X)}.
We also take a symmetric space:
A5 ={A e @®TM|AX,Y,Z) = A(X,Z,Y)} =TM @ S*TM.,
We will then find a bijection between the above two spaces in the following theorem.

THEOREM 3.3. A bijection between SMT and A® arises from the following:
For S € SMT, we associate G € A° by

9) G(X,Y,Z) = S(X,Y,Z) + S(X, Z.Y).
And for G € A%, we associate S € SMT by
25(X,Y,Z) = G(X,Y,Z) — G(Y, Z,X) + G(Z, X, Y).
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Proof. Given S € SMT, we get G € A° by
G(X,Y,Z)=S(X,Y,Z)+ S(X,Z,Y) € A®.
Now since S € SMT,
G(X,Y,Z) - G(Y, Z,X) + G(Z,X,Y)
= S(X,Y,Z)+S(X,Z,Y) - S(Y,Z,X) — S(V. X, Z)
+5(Z,X,Y)+ S(Z,Y, X)
— 25(X.Y,Z).
We note that the above (9) gives a linear map for each T, M, x € M.

Finally, the elements of SM7T and A are symmetric with respect to two variables,
namely, first and third ones for SMT, second and third ones for A4°. So, SMT and
A® have the same dimension.

We now conclude that the mapping (9) is a bijection from SMT to A°. O

COROLLARY 3.4. Two different SM'T-connections V and V give two different and
tensor fields Vg and Vg.

Proof. For V. = V9 4+ A, recall that
(10) Vg=AX,Y,Z)+ A(X,Z,Y).
So, by the bijection in Theorem 3.3, we have two different tensor fields Vg and Vg
for two different SMT- connection V, V.
Here (10) follows from
V(XY Z) = (Vxg)(Y,2)
= X(9(Y,2)) —9(VxY,Z) — g(Y,VxZ)
= VXY, 2)+ A(X,Y,Z) + A(X,Z,Y)
= AX,Y,Z)+ A(X,Z,)Y).
]

REMARK 3.5. Since @2TM = A*T'M @ S?*TM where the tensor product A? and
S? is skew-symmetric and symmetric tensor products, respectively, we have

*TM = AM @ A°
with
AM = {A € @TM|A(X,Y,Z) = —A(X,Z,Y)} =TM @ N*T M.
So, from the bijection in Theorem 3.3 we also have a bijection between SM7T and

®3TM/AM. Note that AM is the space of A’s of metric connections V, that is, linear
connections with Vg = 0.
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