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ON THE BOUNDS OF THE EIGENVALUES OF MATRIX

POLYNOMIALS

Wali Mohammad Shah and Zahid Bashir Monga∗

Abstract. Let P (z) :=

n∑
j=0

Ajz
j , Aj ∈ Cm×m, 0 ≤ j ≤ n be a matrix polynomial

of degree n, such that

An ≥ An−1 ≥ . . . ≥ A0 ≥ 0, An > 0.

Then the eigenvalues of P (z) lie in the closed unit disk.
This theorem proved by Dirr and Wimmer [IEEE Trans. Automat. Control

52(2007), 2151-2153 ] is infact a matrix extension of a famous and elegant result
on the distribution of zeros of polynomials known as Eneström-Kakeya theorem. In
this paper, we prove a more general result which inter alia includes the above result
as a special case. We also prove an improvement of a result due to Lê, Du, Nguyên
[Oper. Matrices, 13(2019), 937-954] besides a matrix extention of a result proved
by Mohammad [Amer. Math. Monthly, vol.74, No.3, March 1967].

1. Introduction and statement of results

Let Cm×m be the set of all m × m matrices with entries from the field C. By a
matrix polynomial we mean a function P : C→ Cm×m defined by

(1) P (z) :=
n∑

j=0

Ajz
j, Aj ∈ Cm×m.

If An 6= 0, then P (z) is said to be a matrix polynomial of degree n. If An = I, where
I is the identity matrix, then the matrix polynomial P (z) is called monic. We say λ
is an eigenvalue of P (z) if there exists u ∈ Cm \ {0} such that P (λ)u = 0. In this case
u is said to be an eigenvector of P (z).

For matrices A,B ∈ Cm×m, we write A ≥ 0 and A > 0 if A is positive semidefinite
and positive definite, respectively. A ≥ B and A > B mean A−B ≥ 0 and A−B > 0,
respectively.

We denote by λmax(A) and λmin(A) the maximum and minimum eigenvalues of
a Hermitian matrix A respectively. Also the spectral radius denoted by ρ(A) of a
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matrix A is defined by

(2) ρ(A) = max
{
|λ| ; λ is an eigenvalue of A

}
.

Dirr and Wimmer [3] proved the following result concerning the bounds on the eigen-
values of matrix polynomials.

Theorem 1.1. Let P (z) :=
n∑

j=0

Ajz
j, Aj ∈ Cm×m, 0 ≤ j ≤ n be a matrix polyno-

mial of degree n such that

(3) An ≥ An−1 ≥ . . . ≥ A0 ≥ 0, An > 0.

Then the eigenvalues of P (z) lie in the closed unit disk |λ| ≤ 1.

The Eneström-Kakeya theorem [4, 7] is a special case of Theorem 1.1 if we put
m = 1. Note that conclusion of Theorem 1.1 is also true if we replace relation symbol
” > ” by ” ≥ ” in (3).

In this paper we first obtain the following generalization of Theorem 1.1.

Theorem 1.2. Let P (z) :=
n∑

j=0

Ajz
j be a matrix polynomial such that Aj ∈

Cm×m, 0 ≤ j ≤ n, are positive-definite. If the scalars t1 > t2 ≥ 0 can be found such
that

(4) t1t2Aj + (t1 − t2)Aj−1 − Aj−2 ≥ 0, j = 1, 2, · · · , n+ 1,

where A−1 = An+1 = 0. Then the eigenvalues of P (z) lie in the closed disk

(5) |λ| ≤ t1.

For t1 = 1, t2 = 0, Theorem 1.2 reduces to Theorem 1.1. Moreover a result due to
Aziz and Mohammad [2] is a special case of Theorem 1.2 if we put m = 1.

On applying Theorem 1.2, to the matrix polynomial Q(z) = znP

(
1

z

)
, we get the

following:

Corollary 1.3. Let P (z) :=
n∑

j=0

Ajz
j be a matrix polynomial such that Aj ∈

Cm×m, 0 ≤ j ≤ n are positive-definite. If t1 > t2 ≥ 0 can be found such that

(6) t1t2Aj + (t1 − t2)Aj+1 − Aj+2 ≥ 0, j = −1, 0, · · · , n− 1,

where A−1 = An+1 = 0. Then the eigenvalues of P (z) lie in the region

(7) |λ| ≥ 1

t1
.

On combining Theorem 1.2 and Corollary 1.3 and making t2 = 0, a result due to
Lê, Du and Nguyên [8, Theorem 2.6] follows immediately .

We next prove the following improvement of a result due to Lê, Du and Nguyên [8,
Theorem 2.3].
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Theorem 1.4. Let P (z) :=
n∑

j=0

Ajz
j, be a matrix polynomial such that Aj ∈

Cm×m, 0 ≤ j ≤ n satisfy

(8) An ≥ An−1 ≥ . . . ≥ A0 ≥ 0, An > 0.

Then the eigenvalues of P (z) lie in the annular region

(9)
λmin(A0)

λmax(2An − A0)
≤ |λ| ≤ 1.

The bound obtained is sharp and equality holds for P (z) =
n∑

j=0

Izj.

A result due to Gardner and Govil [5] is a special case of Theorem 1.4, if we put in
particular m = 1. Also note that if A0 > 0, then the lower bound given by Theorem
1.4 is always better than that obtained in [8, Theorem 2.3].
Finally we obtain the following result.

Theorem 1.5. Let P (z) :=
n−1∑
j=0

Ajz
j + Izn, Aj ∈ Cm×m, 0 ≤ j ≤ n be a monic

matrix polynomial. Denote

(10) Lp = n
1
q

(
n−1∑
j=0

‖Aj‖p
) 1

p

,

where
1

p
+

1

q
= 1 and ‖ · ‖ is the subordinate matrix norm.

Then the eigenvalues of P (z) lie in the closed disk

(11) |λ| ≤ max
(
Lp, L

1
n
p

)
.

The bound obtained is sharp and equality holds for P (z) = Izn − 1

n

n−1∑
j=0

Izj.

A result due to Mohammad [10] is a special case of Theorem 1.5, if we put m = 1.
Letting q →∞ in Theorem 1.5 we get the following.

Corollary 1.6. The eigenvalues of P (z) :=
n−1∑
j=0

Ajz
j + Izn, Aj ∈ Cm×m, 0 ≤ j ≤

n− 1 lie in the closed disk

(12) |λ| ≤ max(L1, L
1
n
1 ),

where

(13) L1 =
n−1∑
j=0

‖Aj‖.

In the special case when ‖ · ‖ is the subordinate norm ‖ · ‖2 defined by ‖A‖2 :=

max
u∗u=1

√
(Au)∗(Au), A ∈ Cm×m, then for a Hermitian matrix A, ‖A‖2 = ρ(A). In this

context we have the following.
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Corollary 1.7. Let P (z) :=
n−1∑
j=0

Ajz
j + Izn be a matrix polynomial such that

Aj ∈ Cm×m, 0 ≤ j ≤ n− 1 are Hermitian matrices. Denote

(14) L′p = n
1
q

(
n−1∑
j=0

(ρ(Aj))
p

) 1
p

,
1

p
+

1

q
= 1.

Then the eigenvalues of P (z) satisfy

(15) |λ| ≤ max(L′p, L
′
p

1
n ).

Letting q →∞ in Corollary 1.7 we get the following.

Corollary 1.8. Let P (z) :=
n−1∑
j=0

Ajz
j+Izn be a matrix polynomialAj ∈ Cm×m, 0 ≤

j ≤ n− 1 are Hermitian. Then the eigenvalues of P(z) lie in the closed disk

(16) |λ| ≤ max(L′1, L
′
1

1
n ),

where

(17) L′1 =
n−1∑
j=0

ρ(Aj).

2. Lemma and proofs of theorems

For the proof of these theorems we need the following lemma (for reference see. [6]).

Lemma 2.1. Let M ∈ Cm×m be a Hermitian matrix, then

(18) λmin(M) = min
u∈Cm,u∗u=1

{u∗Mu}

and

(19) λmax(M) = max
u∈Cm,u∗u=1

{u∗Mu}.

Proof of Theorem 1.2: Let λ be an eigenvalue of P (z) and u be the corresponding
eigenvector. Define

Pu(z) =u∗P (z)u

=
n∑

j=0

u∗Ajuz
j.

Since u∗Aju ∈ C, therefore u∗P (z)u is a polynomial with complex coefficients. Since

t1t2Aj + (t1 − t2)Aj−1 − Aj−2 ≥ 0, j = 1, 2, . . . , n+ 1,

we obtain
u∗ (t1t2Aj + (t1 − t2)Aj−1 − Aj−2)u ≥ 0,

i.e.,

t1t2u
∗Aju + (t1 − t2)u∗Aj−1u− u∗Aj−2u ≥ 0.(20)
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Define

Gu(z) = (t2 + z)(t1 − z)Pu(z)

= u∗

((
t1t2 + (t1 − t2)z − z2

) n∑
j=0

Ajz
j

)
u

= u∗

(
n+2∑
j=0

(t1t2Aj + (t1 − t2)Aj−1 − Aj−2) z
j

)
u,

where

A−2 = A−1 = An+1 = An+2 = 0.

Let

Hu(z) = zn+2Gu

(
1

z

)
= u∗

(
n+2∑
j=0

(t1t2Aj + (t1 − t2)Aj−1 − Aj−2) z
n−j+2

)
u

= −u∗Anu +Ku(z),(21)

where

Ku(z) = u∗

(
n+2∑
j=1

(t1t2An−j+2 + (t1 − t2)An−j+1 − An−j) z
j

)
u.

Then, by (20),

max
|z|= 1

t1

|Ku(z)| ≤
n+2∑
j=1

|u∗ (t1t2An−j+2 + (t1 − t2)An−j+1 − An−j)u|
1

tj1

=
n+2∑
j=1

u∗ (t1t2An−j+2 + (t1 − t2)An−j+1 − An−j)u
1

tj1

= u∗Anu.

Since Ku(z) is a polynomial with complex coefficients, by Schwarz’s lemma (for ref.

see [1]) we have for |z| ≤ 1

t1

|Ku(z)| ≤ (u∗Anu)t1|z|.

Therefore from (21), we have for |z| ≤ 1

t1

|Hu(z)| ≥ |u∗Anu| − |u∗Anuzt1|
= u∗Anu(1− |z|t1).

Thus we get for |z| < 1

t1
|Hu(z)| > 0.

Consequently the zeros of Hu(z) lie in |z| ≥ 1

t1
and thus that of Gu(z) lie in |z| ≤ t1.

Therefore all the zeros of Pu(z) lie in the closed disk |z| ≤ t1. Since λ is a zero of
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Pu(z), therefore |λ| ≤ t1. That is the eigenvalues of P (z) lie in the closed disk

|λ| ≤ t1.

This proves the theorem.

Proof of Theorem 1.4: For the proof of the upper bound (see [3, Theorem 2.1]). To
prove the lower bound, let λ be an eigenvalue of P (z) and u be the corresponding
unit eigenvector. Define

Pu(z) =u∗P (z)u

=
n∑

j=0

u∗Ajuz
j.(22)

From (8), it follows that

u∗Anu ≥ u∗An−1u ≥ . . . ≥ u∗A0u ≥ 0.(23)

Define

Gu(z) = (1− z)Pu(z)

= (1− z)
n∑

j=0

u∗Ajuz
j

= u∗A0u + u∗

(
n∑

j=1

(Aj − Aj−1)z
j − Anz

n+1

)
u

= u∗A0u +Hu(z),

where

Hu(z) = u∗

(
n∑

j=1

(Aj − Aj−1)z
j − Anz

n+1

)
u.

Thus for |z| = 1, we have on using (23)

|Hu(z)| =

∣∣∣∣∣u∗
(

n∑
j=1

(Aj − Aj−1)z
j − Anz

n+1

)
u

∣∣∣∣∣
≤

n∑
j=1

(u∗Aju− u∗Aj−1u) + u∗Anu

= u∗(2An − A0)u.

Now Hu(z) is a polynomial with complex coefficients, therefore by Schwarz’s lemma
(for ref. see [1]) we have for |z| ≤ 1

|Hu(z)| ≤ u∗(2An − A0)u|z|.

Thus we have for |z| ≤ 1

|Gu(z)| ≥ |u∗A0u| − |u∗(2An − A0)uz|
= u∗A0u− u∗(2An − A0)u|z|.
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Notice that
u∗A0u

u∗(2An − A0)u
≤ 1. So that if |z| < u∗A0u

u∗(2An − A0)u
, then Gu(z) 6= 0 and

in turn Pu(z) 6= 0. Therefore, the zeros of Pu(z) lie in the region

|z| ≥ u∗A0u

2u∗Anu− u∗A0u
.

Since λ is a zero of Pu(z), therefore

(24) |λ| ≥ u∗A0u

2u∗Anu− u∗A0u
.

This gives on using Lemma 2.1

(25) |λ| ≥ λmin(A0)

λmax(2An − A0)
.

This proves the theorem completely.

Proof of Theorem 1.5: Let u be a unit vector. Then

‖P (z)u‖ =

∥∥∥∥∥uzn +
n−1∑
j=0

Ajuz
j

∥∥∥∥∥
≥ ‖uzn‖ −

n−1∑
j=0

‖Ajuz
j‖

≥ |zn| −
n−1∑
j=0

‖Aj‖|z|j.(26)

Thus by Holder’s inequality, we have

‖P (z)u‖ ≥ |z|n − n
1
q

(
n−1∑
j=0

(
‖Aj‖|z|j

)p) 1
p

=|z|n
1− n

1
q

(
n−1∑
j=0

(
‖Aj‖
|z|(n−j)

)p
) 1

p

 .(27)

Let |z| > max(1, Lp). Then

‖P (z)u‖ ≥|z|n
1− n

1
q

|z|

(
n−1∑
j=0

‖Aj‖p
) 1

p


= |z|n

(
1− Lp

|z|

)
> 0.

Therefore each eigenvalue of P (z) lies in the closed disk

(28) |λ| ≤ max{1, Lp}.

The result follows from (28), if Lp ≥ 1. If however Lp < 1, then from (28), it follows

|λ| ≤ 1.
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Assume L
1
n
p < |z| ≤ 1, then from (27) we have

‖P (z)u‖ ≥ |z|n
1− n

1
q

|z|n

(
n−1∑
j=0

‖Aj‖p
) 1

p


= |z|n

(
1− Lp

|z|n

)
> 0.

Thus in this case the result also follows and hence the theorem is proved completely.
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