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ON THE BOUNDS OF THE EIGENVALUES OF MATRIX
POLYNOMIALS
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n
ABSTRACT. Let P(z) := ZAjzj, A; € C™*™ 0 < j <n be a matrix polynomial
j=0
of degree n, such that
AnzAn—l > ZAO Zoa An > 0.

Then the eigenvalues of P(z) lie in the closed unit disk.

This theorem proved by Dirr and Wimmer [IEEE Trans. Automat. Control
52(2007), 2151-2153 | is infact a matrix extension of a famous and elegant result
on the distribution of zeros of polynomials known as Enestrom-Kakeya theorem. In
this paper, we prove a more general result which inter alia includes the above result
as a special case. We also prove an improvement of a result due to Lé, Du, Nguyén
[Oper. Matrices, 13(2019), 937-954] besides a matrix extention of a result proved
by Mohammad [Amer. Math. Monthly, vol.74, No.3, March 1967].

1. Introduction and statement of results

Let C™*™ be the set of all m x m matrices with entries from the field C. By a
matrix polynomial we mean a function P : C — C™*™ defined by

(1) P(z) =) A, AjeCm™

=0

If A, # 0, then P(z) is said to be a matrix polynomial of degree n. If A,, = I, where
I is the identity matrix, then the matrix polynomial P(z) is called monic. We say A
is an eigenvalue of P(z) if there exists u € C™\ {0} such that P(A)u = 0. In this case
u is said to be an eigenvector of P(z).

For matrices A, B € C™*™, we write A > 0 and A > 0 if A is positive semidefinite
and positive definite, respectively. A > Band A > Bmean A—B > 0and A—B > 0,
respectively.

We denote by Ajpaz(A) and Ay (A) the maximum and minimum eigenvalues of
a Hermitian matrix A respectively. Also the spectral radius denoted by p(A) of a
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matrix A is defined by

(2) p(A) = max {|\| ; X is an eigenvalue of A}.

Dirr and Wimmer [3] proved the following result concerning the bounds on the eigen-
values of matrix polynomials.

THEOREM 1.1. Let P(z) := ZAjzj, A; e C™™m 0 < j <n be a matrix polyno-
=0
mial of degree n such that

(3) A, > A, 1> > A,>0, A, > 0.
Then the eigenvalues of P(z) lie in the closed unit disk || < 1.

The Enestrom-Kakeya theorem [4,7] is a special case of Theorem 1.1 if we put
m = 1. Note that conclusion of Theorem 1.1 is also true if we replace relation symbol
7 > ” by b2 Z 2 in (3>'

In this paper we first obtain the following generalization of Theorem 1.1.

THEOREM 1.2. Let P(z) = ZAjzj be a matrix polynomial such that A; €
§=0
Cm>m () < 5 < n, are positive-definite. If the scalars t; > to > 0 can be found such
that

(4) titgAj+ (t —t)Aj1 —Aj >0, j=1,2,--- ,n+1,
where A_; = A, 41 = 0. Then the eigenvalues of P(z) lie in the closed disk
(5) Al <ty

For t; = 1,5 = 0, Theorem 1.2 reduces to Theorem 1.1. Moreover a result due to
Aziz and Mohammad [2] is a special case of Theorem 1.2 if we put m = 1.
1
On applying Theorem 1.2, to the matrix polynomial Q(z) = z"P (—> , we get the
z
following;:

COROLLARY 1.3. Let P(z) := ZAjzj be a matrix polynomial such that A; €

=0
Cm>m () < j < n are positive-definite. If t; >ty > 0 can be found such that
(6) titeA; + (8 —t2)Aj1 —Ajp >0, j=-1,0,--- ,n—1,
where A_; = A,+1 = 0. Then the eigenvalues of P(z) lie in the region
1
(7) Al > ot
1

On combining Theorem 1.2 and Corollary 1.3 and making t, = 0, a result due to
Lé, Du and Nguyén [8, Theorem 2.6] follows immediately .

We next prove the following improvement of a result due to Lé, Du and Nguyén [8,
Theorem 2.3].
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THEOREM 1.4. Let P(z) := ZAjzj, be a matrix polynomial such that A; €
5=0
Cmxm 0 < j < n satisty

(8) Ay > Ay > > Ag>0, A, > 0.
Then the eigenvalues of P(z) lie in the annular region

)\min (AO)
A11139((21471 - AO)

(9)

<]\ <1.

The bound obtained is sharp and equality holds for P(z) = Z I,
7=0

A result due to Gardner and Govil [5] is a special case of Theorem 1.4, if we put in
particular m = 1. Also note that if Ay > 0, then the lower bound given by Theorem
1.4 is always better than that obtained in [8, Theorem 2.3].

Finally we obtain the following result.

n—1
THEOREM 1.5. Let P(z) = ZA]-Zj + 12", A; € C™™ 0 < j < n be a monic
j=0
matrix polynomial. Denote

n—1 %
(10) Ly =mns (Z IIAjII”) :
7=0

1 1
where — + — =1 and || - || is the subordinate matrix norm.
p

Then the eigenvalues of P(z) lie in the closed disk
(11) A\ < max (L,,,Lg).

n—1
1 ;
The bound obtained is sharp and equality holds for P(z) = [2" — — E 1.
n
=0

A result due to Mohammad [10] is a special case of Theorem 1.5, if we put m = 1.
Letting ¢ — oo in Theorem 1.5 we get the following.

n—1
COROLLARY 1.6. The eigenvalues of P(z) := ZAjzj + 12" A, eC™M0< <
j=0
n — 1 lie in the closed disk
(12) Al < max(Ly, Ly),

where
n—1

(13) Ly =) |4
=0

In the special case when || - || is the subordinate norm || - || defined by ||Al|s :=
max V(Au)*(Au), A € C™*™ then for a Hermitian matrix A, ||A||2 = p(A). In this
context we have the following.
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n—1
COROLLARY 1.7. Let P(z) := ZAjzj + 12" be a matrix polynomial such that
=0
A; e C™™ 0 < j<n-—1 are Hermitian matrices. Denote

1

(14) L, = ni ( : <p<Aj>>p>p, Lyloy

e P q

Then the eigenvalues of P(z) satisfy

(15) I\ < max (L, L"),
Letting ¢ — oo in Corollary 1.7 we get the following.
n—1
COROLLARY 1.8. Let P(z) := Z A2 +12" be a matrix polynomial A; € C™ ™ () <
=0
j <n—1 are Hermitian. Then the eigenvalues of P(z) lie in the closed disk
(16) Al < max(Lf, L),
where
n—1
(17) Ly = p(4)).
=0

2. Lemma and proofs of theorems

For the proof of these theorems we need the following lemma (for reference see. [6]).

LEMMA 2.1. Let M € C™*™ be a Hermitian matrix, then
(18) Amin(M) = min  {u"Mu}

ueC™ u*u=1
and

(19) Amax(M) = max {u"Mu}.

ueC™ u*u=1

Proof of Theorem 1.2: Let A be an eigenvalue of P(z) and u be the corresponding
eigenvector. Define

Py(z) =u*P(z)u
:Z u*Ajuzj.
=0

Since u*A;u € C, therefore u*P(z)u is a polynomial with complex coeflicients. Since
titoAj + (t —t2)Aj1 — Aj >0, j=1,2,...,n+1,
we obtain
u” (tthAj + (tl - tQ)Aj,1 - Aj,2> u Z 0,
ie.,

(20) tltgu*Ajll + (tl — tg)u*Aj_lu — U*Aj_gll Z 0.
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Define
Gu(z) = (t2 + 2)(t1 — 2) Pu(2)
=u* <(t1t2 + (tl - tQ)Z — 22) ZAij) u
=0
n+2
=u* (Z (tthA]’ + (tl - tg)Aj,1 - Aj,Q) ZJ> u,
j=0
where
A_Q - A_l = ATH-I = An+2 = O
Let
n+2 1
Hy(z) =2"""Gy | -
z
n+2
=u* (Z (tthAj + (tl — tg)Aj,1 — Aj,Q) an+2> u
j=0
(21) = —uA,u+ K,(2),
where

n+2
Ku(Z) =u* (Z (tthAn_j+2 + (tl — tQ)An_j+1 — An—j) Zj> u.

j=1
Then, by (20),

n—+2

. 1
miax [Ku(2)] <)t (titaAn_jio + (b — t2) Apjr — An_j) 1l 7
AT j=1 1
n—+2 1
= ZU* (titaAn_jio + (t1 — t2)An_jy1 — Apj) u—
i=1 b
=u*A,u.

Since K,(z) is a polynomial with complex coefficients, by Schwarz’s lemma (for ref.

see [1]) we have for |z| < -
1

Ku(2)] < (0 Ayu)ta2].

Therefore from (21), we have for |z| < o
1

|Hu(z)| > |u*Ayu| — [u*Ajuzt|
=u'A,u(l — |z]ty).
1
Thus we get for |z| < .
1
|Hu(2)| > 0.
1
Consequently the zeros of Hy(2) lie in |z| > - and thus that of Gy(2) lie in |z| < t;.
1

Therefore all the zeros of P,(z) lie in the closed disk |z| < t;. Since A is a zero of
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Py(z), therefore |A| < ¢;. That is the eigenvalues of P(z) lie in the closed disk
IA] < ty.
This proves the theorem. O]

Proof of Theorem 1.4: For the proof of the upper bound (see [3, Theorem 2.1]). To
prove the lower bound, let A be an eigenvalue of P(z) and u be the corresponding
unit eigenvector. Define

Py(z) =u*P(z)u

(22) :i u*Ajuz
=0
From (8), it follows that
(23) uw'A,u>u'4,_ju>...>u"Ayu > 0.
Define

Gu(z) = (1 = 2)Pu(2)

=(1- Z>Z u*Ajuz’
=0

= u*Agu + u* (Z(AJ — Aj_l)Zj — Anz"H) u

j=1

=u"Agu + Hy(2),
where
Hu(Z) =u’ (Z(A] — Aj_l)Zj — An2n+1> u.
j=1
Thus for |z| = 1, we have on using (23)

u* A — A ) — A2 | u
> (A= A;)

J=1

|Hu(2)] =

< Z(u*Aju —u'A,_ju)+u'd,u
j=1

=u"(24, — 4p)u.

Now Hy(z) is a polynomial with complex coefficients, therefore by Schwarz’s lemma
(for ref. see [1]) we have for |z| <1

|Hu(2)] < u* (24, — Ap)ulz|.
Thus we have for |z| < 1
|Gu(2)] > [u*Agu| — |u*(24,, — Ap)uz|
=u*Apu — u*(24,, — Ap)u|z|.
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u*Apu u*Apu
u* (24, — Ag)u u* (24, — Ag)u’
in turn P,(z) # 0. Therefore, the zeros of Py(z) lie in the region
u*Apu
2l 2 2u*A,u — uApu’

Since A is a zero of Py(z), therefore

Notice that

< 1. So that if |z| <

then G, (2) # 0 and

P E—_L
— 2urd,u — u*Apu’

This gives on using Lemma 2.1

(24)

Amin(AO)
25 Al > .
( ) ‘ ’ - )\max<2An - AO)
This proves the theorem completely. O
Proof of Theorem 1.5: Let u be a unit vector. Then
n—1
|P(2)u]| = ||uz" + Z Ajuz’
§=0
n—1
> [Juz"] = Y [[Au|
j=0
n—1
(26) > 12" = Y (145011
j=0

Thus by Holder’s inequality, we have

1P(z)ul] = |2[* - (Z 14511121) )

J
1

1) = (Z (! )) ;

J

Let |z| > max(1, L,). Then
n n — ’
[P()ul] Z|=]" {1 - T <Z 14; Hp>
0

L
e
||

> 0.
Therefore each eigenvalue of P(z) lies in the closed disk
(28) |A| <max{1,L,}.
The result follows from (28), if L, > 1. If however L, < 1, then from (28), it follows
Al < 1.
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1
Assume Ly < |z| <1, then from (27) we have

1
1 n—1 »

n nd

[P(z)ull = [2]" [ 1 - PR O IA P
=0
L
()
|2["

> 0.

Thus in this case the result also follows and hence the theorem is proved completely.

O
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