DOI QR코드

DOI QR Code

Direct bioethanol production from lignocellulosic biomass using white rot fungus Cerrena unicolor

  • Kyung Hoan Im (Division of Life Sciences, Incheon National University) ;
  • Jaehyuk Choi (Division of Life Sciences, Incheon National University) ;
  • Seung A Baek (Honam National Institute of Biological Resources) ;
  • Tae Soo Lee (Division of Life Sciences, Incheon National University)
  • 투고 : 2023.04.24
  • 심사 : 2023.06.19
  • 발행 : 2023.06.30

초록

White rot fungus Cerrena unicolor IUM 5400 produced ethanol from diverse sugars, including glucose, mannose, galactose, and cellobiose at 0.38, 0.28, 0.08, and 0.27 g of ethanol per g of sugar consumed, respectively. The fungus produced relatively high amounts of ethanol from xylose (0.28 g of ethanol per g of sugar consumed); however, the ethanol conversion rate of arabinose was relatively low (at 0.08 g of ethanol per g sugar consumed). When cultured in a basal medium containing 20 g/L rice straw or corn stalks, C. unicolor IUM 5400 produced 0.18 g and 0.18 g of ethanol per g of rice straw and corn stalks, respectively. The results suggest that C. unicolor IUM 5400 is a white rot fungus that can effectively hydrolyze cellulose or hemicellulose to sugars and simultaneously convert them to ethanol.

키워드

과제정보

This study was supported by a research grant from Incheon National University in 2022.

참고문헌

  1. Baruah J, Nath BK, Sharma R, Kumar S, Deka RC, Baruah DC, Kalita E. 2018. Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6: 141.
  2. Blanchette RA. 1995. Degradation of the lignocellulose complex in wood. Can J Bot 73: S999-S1010. https://doi.org/10.1139/b95-350
  3. Brazdausks P, Puke M, Vedernikovs N, Kruma I. 2014. The effect of catalyst amount on the production of furfural and acetic acid from birch wood in the biomass pretreatment process. Balt For 20: 106-114.
  4. Broda N, Yelle DJ, Serwanska K. 2022. Bioethanol production from lignocellulosic biomass-challenges and solutions. Molecules 27248717.
  5. Busic A, Mardetko N, Kundas S, Morzak G, Belskaya H, Santek MI, Komes D, Novak S, Santek B. 2018. Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technol Biotechnol 56(3): 289-311.
  6. Choi YH, Park JH, Lee TS. 2015. Bioethanol production from rice straw by Irpex consors. J Mushrooms 13(2): 85-91. https://doi.org/10.14480/JM.2015.13.2.85
  7. Chu BCH, Lee H. 2007. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25(5): 425-441. https://doi.org/10.1016/j.biotechadv.2007.04.001
  8. Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqu KS. 2016. Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng Life Sci 16: 1-16. https://doi.org/10.1002/elsc.201400196
  9. Horisawa S, Ando H, Ariga O, Sakuma Y. 2015. Direct ethanol production from cellulosic materials by consolidated biological processing using the wood rot fungus Schizophyllum commune. Bioresour Technol 197: 37-41. https://doi.org/10.1016/j.biortech.2015.08.031
  10. Horisawa S, Nishida T. 2014. Ethanol production from lignocellulosic material by white rot fungi. J Advan Clean Energ 1: 71-76.
  11. Huang SY, Chen JC. 1988. Ethanol production in simultaneous saccharification and fermentation of cellulose with temperature profiling. J Ferment Technol 66(5): 509-516. https://doi.org/10.1016/0385-6380(88)90083-0
  12. Im KH, Nguyen TK, Choi JH, Lee TS. 2016. Ethanol production from various sugars and cellulosic biomass by white rot fungus Lenzites betulinus. Mycobiology 44: 48-53. https://doi.org/10.5941/MYCO.2016.44.1.48
  13. Kamei I, Hirota Y, Mori T, Hirai H, Meguro S, Kondo R. 2012. Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour Technol 112: 137-142. https://doi.org/10.1016/j.biortech.2012.02.109
  14. Kudahettige R, Holmgren M, Imerzeel P, Sellstedt A. 2012. Characterization of bioethanol production from hexoses and xylose by the white rot fungus Trametes versicolor. Bioenerg Res 5: 277-285. https://doi.org/10.1007/s12155-011-9119-5
  15. Liang XH, Hua DL, Wang ZX, Zhang J, Zhao YX, Xu HP, Li Y, Gao MT, Zhang XD. 2013. Production of bioethanol using lignocellulosic hydrolysate by the white rot fungus Hohenbuehelia sp. ZW-16. Ann Microbiol 63: 719-723. https://doi.org/10.1007/s13213-012-0524-6
  16. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3): 426-428. https://doi.org/10.1021/ac60147a030
  17. Mizuno R, Ichinose H, Maehara T, Takabatake K, Kaneko S. 2009. Properties of ethanol fermentation by Flammulina velutipes. Biosci Biotechnol Biochem 73(10): 2240-2245. https://doi.org/10.1271/bbb.90332
  18. Okamoto K, Imashiro K, Akizawa Y, Onimura A, Yoneda M, Nitta Y, Maekawa N, Yanase H. 2010. Production of ethanol by the white-rot basidiomycetes Peniophora cinerea and Trametes suaveolens. Biotechnol Lett 32: 909-913. https://doi.org/10.1007/s10529-010-0243-7
  19. Okamoto K, Kanawaku R, Masumoto M, Yanase H. 2012. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus. Enzyme Microb Technol 50(2): 96-100. https://doi.org/10.1016/j.enzmictec.2011.10.002
  20. Okamura T, Ogata T, Minamimoto N, Takeno T, Noda H, Fukuda S, Ohsugi M. 2001. Characteristics of wine produced by mushroom fermentation. Biosci Biotechnol Biochem 65(7): 1596-1600. https://doi.org/10.1271/bbb.65.1596
  21. Park WH, Lee JH. 2011. New wild fungi of Korea. Kyohak Publishing Co., Seoul, Republic of Korea. 332.
  22. Puls J, Schuseil J. 1993. Chemistry of hemicellulose: relationship between hemicellulose structure and enzymes required for hydrolysis. In M. P. Coughlan & G. P. Hazlewood. (ed.), Hemicelluloses and hemicellulases, Portland Press, London, England. 1-27.
  23. Rasmussen ML, Shrestha P. Khanal SK, Pometto AL III, van Leeuwen JH. 2010. Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum. Bioresour Technol 101: 3526-3533. https://doi.org/10.1016/j.biortech.2009.12.115
  24. Skory C, Freer SN, Bothast RJ. 1997. Screening for ethanol-producing filamentous fungi. Biotechnol Lett 19: 203-206. https://doi.org/10.1023/A:1018337003433
  25. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. 2008. Determination of structural carbohydrates and lignin in biomass: Laboratory Analytical Procedure. NREL/TP-510-42618, National Renewable Energy Laboratory, Colorado, USA. https://www.nrel.gov/docs/gen/fy13/42618.pdf
  26. Sun Y, Cheng JY. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83: 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
  27. White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of ribosomal RNA genes for phylogentics. In M.A. Innis, D. H. Gelfand, J. J. Sniski & T. J. White. (ed.), PCR protocols: a guide to methods and applications, Academic Press, San Diego, USA. 315.
  28. Yoon KN, Lee TS. 2022. Bioconversion of ethanol from various sugars and cellulosic materials by brown rot fungus Phaeolus schweinitzii. J Mushrooms 20(1): 1-6.