DOI QR코드

DOI QR Code

Experimental study of noise level optimization in brain single-photon emission computed tomography images using non-local means approach with various reconstruction methods

  • Seong-Hyeon Kang (Department of Health Science, General Graduate School of Gachon University) ;
  • Seungwan Lee (Department of Radiological Science, Konyang University) ;
  • Youngjin Lee (Department of Radiological Science, College of Health Science, Gachon University)
  • Received : 2022.10.11
  • Accepted : 2023.01.15
  • Published : 2023.05.25

Abstract

The noise reduction algorithm using the non-local means (NLM) approach is very efficient in nuclear medicine imaging. In this study, the applicability of the NLM noise reduction algorithm in single-photon emission computed tomography (SPECT) images with a brain phantom and the optimization of the NLM algorithm by changing the smoothing factors according to various reconstruction methods are investigated. Brain phantom images were reconstructed using filtered back projection (FBP) and ordered subset expectation maximization (OSEM). The smoothing factor of the NLM noise reduction algorithm determined the optimal coefficient of variation (COV) and contrast-to-noise ratio (CNR) results at a value of 0.020 in the FBP and OSEM reconstruction methods. We confirmed that the FBP- and OSEM-based SPECT images using the algorithm applied with the optimal smoothing factor improved the COV and CNR by 66.94% and 8.00% on average, respectively, compared to those of the original image. In conclusion, an optimized smoothing factor was derived from the NLM approach-based algorithm in brain SPECT images and may be applicable to various nuclear medicine imaging techniques in the future.

Keywords

Acknowledgement

This work was supported by the Gachon University research fund of 2022 (GCU-202206110001) and was supported by the National Research Foundation of Korea (NRF-2021R1F1A1061440). We would like to thank Yongho Do who works at Seoul Metropolitan Government Seoul National University Boramae Medical Center for helping us acquire SPECT data.

References

  1. H.H. Park, T.H. Kim, J.Y. Shin, T.S. Lee, K.Y. Lyu, Usefulness of CT based SPECT fusion image in the lung disease: preliminary study, J. Radiol. Sci. Technol. 35 (2012) 59-64.
  2. T. Yamamoto, J.M. Kim, K.S. Lee, T. Takayama, T. Kitahara, Development of a new cardiac and Torso phantom for verifying the accuracy of myocardial perfusion SPECT, J. Radiol. Sci. Technol. 31 (2008) 389-399.
  3. W. Zheng, S. Li, A. Krol, C.R. Schmidtlein, X. Zeng, Y. Xu, Sparsity promoting regularization for effective noise suppression in SPECT image reconstruction, Inverse Probl. 35 (2019), 115011.
  4. D.G. Amen, M. Trujillo, A. Newberg, K. Willeumier, R. Tarzwell, J.C. Wu, B. Chaitin, Brain SPECT imaging in complex psychiatric cases: an evidence-based, underutilized Tool, Open Neuroimaging J. 5 (2011) 40-48. https://doi.org/10.2174/1874440001105010040
  5. N.A. Nikolov, S.S. Makeev, O. Korostynska, T.G. Novikova, Y.S. Kriukova, Gaussian filter for brain SPECT imaging, Int. Biosyst. and Bioeng. 6 (2022) 4-15. https://doi.org/10.20535/ibb.2022.6.1.128475
  6. P.P. Bruyant, Analytic and iterative reconstruction algorithms in SPECT, J. Nucl. Med. 43 (2002) 1343-1358.
  7. S. Vandenberghe, Y. D'Asseler, R. Van de Walle, T. Kauppinen, M. Koole, L. Bouwens, K. Van Laere, I. Lemahieu, R.A. Dieerckx, Iterative reconstruction algorithms in nuclear medicine, Comput. Med. Imag. Graph. 25 (2001) 105-111. https://doi.org/10.1016/S0895-6111(00)00060-4
  8. A.C. Trevisan, M.D. Raed, V. Tumas, L. Alexandre-Santos, F.A. Pitella, E.N. Itikawa, J.H. Silvah, M. Kato, E.Z. Martinez, J.A. Achcar, M.V. Simoes, L. Wichert-Ana, Comparison between OSEM and FBP reconstruction algorithms for the qualitative and quantitative interpretation of brain DAT-SPECT using an anthropomorphic striatal phantom: implications for the practice, Res. on Biomed. Eng. 36 (2020) 77-88. https://doi.org/10.1007/s42600-019-00034-x
  9. L.I. Ruudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D 60 (1992) 259-268. https://doi.org/10.1016/0167-2789(92)90242-F
  10. H.V. Bhujle, B.H. Vadavadagi, NLM based magnetic resonance image denoising e a review, Biomed. Signal Process Control 47 (2019) 252-261. https://doi.org/10.1016/j.bspc.2018.08.031
  11. B.G. Kim, S.H. Kang, C.R. Park, H.W. Jeong, Y. Lee, Noise level and similarity analysis for computed tomographic Thoracic image with fast non-local means denoising algorithm, Appl. Sci. 10 (2020), https://doi.org/10.3390/app10217455.
  12. M.Y. Jang, C.R. Park, S.H. Kang, Y. Lee, Experimental study of the fast non-local means noise reduction algorithm using the Hoffman 3D brain phantom in nuclear medicine SPECT image, Optik 224 (2020), 165440.
  13. S.H. Kang, J.Y. Kim, Application of fast non-local means algorithm for noise reduction using separable color channels in light microscopy images, Int. J. Environ. Res. Publ. Health 18 (2021), https://doi.org/10.3390/ijerph18062903.
  14. A. Buades, B. Coll, J.M. Morel, A Non-local Algorithm for Image Denoising, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005, https://doi.org/10.1109/CVPR.2005.38.
  15. D. Choi, S.H. Kang, C.R. Park, Y. Lee, Study of the noise reduction algorithm with median modified wiener filter for T2-weighted magnetic resonance brain images, J. of Magn. 26 (2021) 50-59. https://doi.org/10.4283/JMAG.2021.26.1.050
  16. K. Kim, M.H. Lee, Y. Lee, Investigation of a blind-deconvolution framework after noise reduction using a gamma camera in nuclear medicine imaging, Nucl. Eng. Technol. 52 (2020) 2594-2600. https://doi.org/10.1016/j.net.2020.04.032
  17. A. Mittal, R. Soundararajan, A.C. Bovik, Making a "completely blind" image quality analyzer, IEEE Signal Process. Lett. 20 (2013) 209-212. https://doi.org/10.1109/LSP.2012.2227726
  18. P. Rajendran, A. Sharma, M. Pramanik, Photoacoustic imaging aided with deep learning: a review, Biomed. Eng. Letters 12 (2022) 155-173. https://doi.org/10.1007/s13534-021-00210-y
  19. L. Gondara, Medical Image Denoising Using Convolutional Denoising Autoencoders, 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), 2017, https://doi.org/10.1109/ICDMW.2016.0041.
  20. N.A. Olia, A. Kamali-Asl, S.H. Tabrizi, P. Geramifar, P. Sheikhzadeh, S. Farzanefar, H. Arabi, H. Zaidi, Deep learning-based denoising of low-dose SPECT myocardial perfusion images: quantitative assessment and clinical performance, Eur. J. Nucl. Med. Mol. Imag. 49 (2022) 1508-1522. https://doi.org/10.1007/s00259-021-05614-7
  21. J.H. Lee, Y.J. Kim, K.G. Kim, Bone age estimation using deep learning and hand X-ray images, Biomed. Eng. Letters 10 (2020) 323-331. https://doi.org/10.1007/s13534-020-00151-y
  22. C. Wright, P. Makela, A. Bigot, M. Anttinen, P.J. Bostrom, R.B. Sequeiros, Deep learning prediction of non-perfused volume without contrast agents during prostate ablation therapy, Biomed. Eng. Letters (2022), https://doi.org/10.1007/s13534-022-00250-y.
  23. A.H. Shahid, M.P. Singh, A deep learning approach for prediction of Parkinson's disease progression, Biomedical Engineering Letters 10 (2020) 227-239. https://doi.org/10.1007/s13534-020-00156-7
  24. M.A.A. Hegazy, M.H. Cho, M.H. Cho, S.Y. Lee, U-net based metal segmentation on projection domain for metal artifact reduction in dental CT, Biomed. Eng. Letters 9 (2019) 375-385. https://doi.org/10.1007/s13534-019-00110-2