DOI QR코드

DOI QR Code

A variational nodal formulation for multi-dimensional unstructured neutron diffusion problems

  • Qizheng Sun (School of Nuclear Science and Engineering, Shanghai Jiao Tong University) ;
  • Wei Xiao (School of Nuclear Science and Engineering, Shanghai Jiao Tong University) ;
  • Xiangyue Li (School of Nuclear Science and Engineering, Shanghai Jiao Tong University) ;
  • Han Yin (School of Nuclear Science and Engineering, Shanghai Jiao Tong University) ;
  • Tengfei Zhang (School of Nuclear Science and Engineering, Shanghai Jiao Tong University) ;
  • Xiaojing Liu (School of Nuclear Science and Engineering, Shanghai Jiao Tong University)
  • Received : 2022.11.06
  • Accepted : 2023.02.14
  • Published : 2023.06.25

Abstract

A variational nodal method (VNM) with unstructured-mesh is presented for solving steady-state and dynamic neutron diffusion equations. Orthogonal polynomials are employed for spatial discretization, and the stiffness confinement method (SCM) is implemented for temporal discretization. Coordinate transformation relations are derived to map unstructured triangular nodes to a standard node. Methods for constructing triangular prism space trial functions and identifying unique nodes are elaborated. Additionally, the partitioned matrix (PM) and generalized partitioned matrix (GPM) methods are proposed to accelerate the within-group and power iterations. Neutron diffusion problems with different fuel assembly geometries validate the method. With less than 5 pcm eigenvalue (keff) error and 1% relative power error, the accuracy is comparable to reference methods. In addition, a test case based on the kilowatt heat pipe reactor, KRUSTY, is created, simulated, and evaluated to illustrate the method's precision and geometrical flexibility. The Dodds problem with a step transient perturbation proves that the SCM allows for sufficiently accurate power predictions even with a large time-step of approximately 0.1 s. In addition, combining the PM and GPM results in a speedup ratio of 2-3.

Keywords

Acknowledgement

This research is supported by the National Key R&D Program of China [2020YFB1901900] and the National Natural Science Foundation of China [12175138, U20B2011].

References

  1. M.M.R. Williams, Computational Methods of Neutron Transport, 1984. 
  2. J.A. Welch, J. Kophazi, A.R. Owens, M.D. Eaton, A geometry preserving, conservative, mesh-to-mesh isogeometric interpolation algorithm for spatial adaptivity of the multigroup, second-order even-parity form of the neutron transport equation, J. Comput. Phys. 347 (2017) 129-146, https://doi.org/10.1016/j.jcp.2017.06.015. 
  3. S. Marguet, Computational neutron transport methods, in: Phys. Nucl. React., Springer, Cham, 2017, pp. 593-727, https://doi.org/10.1007/978-3-319-59560-3_9. 
  4. A. Hebert, Multigroup neutron transport and diffusion computations, in: Handb. Nucl. Eng., Springer, Boston, MA, 2010, pp. 751-911, https://doi.org/10.1007/978-0-387-98149-9_8. 
  5. J. Ge, D. Zhang, W. Tian, K. Wang, S. Qiu, G.H. Su, Steady and transient solutions of neutronics problems based on finite volume method (FVM) with a CFD code, Prog. Nucl. Energy 85 (2015) 366-374, https://doi.org/10.1016/j.pnucene.2015.07.012. 
  6. J. Wood, M.M.R. Williams, Recent progress in the application of the finite element method to the neutron transport equation, Prog. Nucl. Energy 14 (1984) 21-40, https://doi.org/10.1016/0149-1970(84)90010-6. 
  7. R.D. Lawrence, Progress in nodal methods for the solution of the neutron diffusion and transport equations, Prog. Nucl. Energy 17 (1986) 271-301, https://doi.org/10.1016/0149-1970(86)90034-X. 
  8. X. Zhou, J. Guo, F. Li, General nodal expansion method for multi-dimensional steady and transient convection-diffusion equation, Ann. Nucl. Energy 88 (2016) 118-125, https://doi.org/10.1016/j.anucene.2015.10.023. 
  9. K.S. Smith, An Analytic Nodal Method for Solving the Two-Group, Multidimensional, Static and Transient Neutron Diffusion Equations, Kansas State University, 1976. 
  10. V.G. Zimin, Polynomial and semi-analytic nodal methods for nonlinear iteration procedure, in: TheInt. Conf. Phys. Nucl. Sci. Technol., Proceedding of the International Conference on the Physics of Nuclear Science and Technology, 1998. 
  11. G. Palmiotti, E.E. Lewis, C.B. Carrico, VARIANT: VARIational Anisotropic Nodal Transport for Multidimensional Certesian and Hexagonal Geometry Calculation, Argonne National Laboratory, 1995. 
  12. T. Zhang, Z. Li, Variational nodal methods for neutron transport: 40 years in review, Nucl. Eng. Technol. (2022), https://doi.org/10.1016/J.NET.2022.04.012. 
  13. I. Dilber, E.E. Lewis, Variational nodal methods for neutron transport, Nucl. Sci. Eng. 91 (1985) 132-142, https://doi.org/10.13182/NSE85-A27436. 
  14. V.G. Zimin, D.M. Baturin, Polynomial nodal method for solving neutron diffusion equations in hexagonal-z geometry, Ann. Nucl. Energy 29 (2002) 1105-1117, https://doi.org/10.1016/S0306-4549(01)00083-4. 
  15. V. Zimin, H. Ninokata, Polynomial and semi-analytic nodal methods for nonlinear iteration procedure, in: Polynomial Semi-analytic Nodal Methods Nonlinear Iteration Proced, 1998. http://www.eniko.ru/etssite/lib/PHYSOR98.pdf. 
  16. B.R. Bandini, K.N. Ivanov, A.J. Baratta, R.G. Steinke, Verification of a three-dimensional nodal transient neutronics routine for the TRAC-PF1/MOD3 thermal-hydraulic system analysis code, Nucl. Technol. 123 (1998), https://doi.org/10.13182/NT98-A2875. 
  17. B. Ronald, A Three-Dimensional Transient Neutronics Routine for the TRAC-PF1 Reactor Thermal Hydraulic Computer Code, Los Alamos National Laboratory, 1990, https://doi.org/10.2172/80751. 
  18. C. Liao, Study on Numerical Method for Three Dimensional Nodal Space-Time Neutron Kinetic Equations and Coupled Neutronic/Thermal-Hydraulic Core Transient Analysis, Xian Jiaotong University, 2002. 
  19. J.M. Noh, N.Z. Cho, New approach of analytic basis function expansion to neutron diffusion nodal calculation, Nucl. Sci. Eng. 116 (1994) 165-180, https://doi.org/10.13182/NSE94-A19811. 
  20. O.G. Komlev, A group theory nodal method for the diffusion equation in 3-D hexagonal geometry, Int. Conf. Phys. React. 1 (PB) (1996) 615. 
  21. C.B. Carrico, E.E. Lewis, G. Palmiotti, Three-dimensional variational nodal transport methods for cartesian, triangular, and hexagonal criticality calculations, Nucl. Sci. Eng. 111 (1992) 168-179, https://doi.org/10.13182/NSE92-1. 
  22. M.A. Smith, E.E. Lewis, E.R. Shemon, DIF3D-VARIANT 11.0: A Decade of Updates, 2014, https://doi.org/10.2172/1127298. Argonne, IL (United States). 
  23. G. Palmiotti, M. Smith, C. Rabiti, M. Leclere, D. Kaushik, A. Siegel, B. Smith, E.E. Lewis, UNIC: ultimate neutronic investigation code, in: Jt. Int. Top. Meet. Math. Comput. Supercomput. Nucl. Appl. M C + SNA 2007, 2007. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.205.870. (Accessed 4 December 2021). 
  24. Y. Li, Y. Wang, B. Liang, W. Shen, Partitioned-matrix acceleration to the fission-source iteration of the variational nodal method, Prog. Nucl. Energy 85 (2015) 640-647, https://doi.org/10.1016/J.PNUCENE.2015.08.001. 
  25. Y. Wang, C. Rabiti, G. Palmiotti, I. Falls, Krylov solvers preconditioned with the low-order red-black algorithm for the pn hybrid fem for the instant code, Int. Conf. Math. Comput. Methods Appl. to Nucl. Sci. Eng. (2011). 
  26. Y. Wang, H. Zhang, R. Szilard, R. Martineau, Application of the INSTANT-HPS PN transport code to the C5G7 benchmark problem, Trans. Am. Nucl. Soc. 104 (2011). INL/CON-11-22502. 
  27. T. Zhang, E.E. Lewis, M.A. Smith, W.S. Yang, H. Wu, A variational nodal approach to 2D/1D pin resolved neutron transport for pressurized water reactors, Nucl. Sci. Eng. 186 (2017) 120-133, https://doi.org/10.1080/00295639.2016.1273023. 
  28. T. Zhang, Y. Wang, E.E. Lewis, M.A. Smith, W.S. Yang, H. Wu, A three-dimensional variational nodal method for pin-resolved neutron transport analysis of pressurized water reactors, Nucl. Sci. Eng. 188 (2017) 160-174, https://doi.org/10.1080/00295639.2017.1350002. 
  29. T. Zhang, W. Xiao, H. Yin, Q. Sun, X. Liu, VITAS: a multi-purpose simulation code for the solution of neutron transport problems based on variational nodal methods, Ann. Nucl. Energy 178 (2022), 109335, https://doi.org/10.1016/J.ANUCENE.2022.109335. 
  30. K. Zhuang, W. Shang, T. Li, J. Yan, S. Wang, X. Tang, Y. Li, Variational nodal method for three-dimensional multigroup neutron diffusion equation based on arbitrary triangular prism, Ann. Nucl. Energy 158 (2021), 108285, https://doi.org/10.1016/j.anucene.2021.108285. 
  31. B.W. Park, H.G. Joo, Improved stiffness confinement method within the coarse mesh finite difference framework for efficient spatial kinetics calculation, Ann. Nucl. Energy 76 (2015) 200-208, https://doi.org/10.1016/j.anucene.2014.09.029. 
  32. W. Xiao, Q. Sun, X. Liu, H. He, D. He, Q. Pan, T. Zhang, Application of stiffness confinement method within variational nodal method for solving time-dependent neutron transport equation, Comput. Phys. Commun. 279 (2022), 108450, https://doi.org/10.1016/J.CPC.2022.108450. 
  33. Y.A. Chao, A. Attard, Resolution of the stiffness problem of reactor kinetics, Nucl. Sci. Eng. 90 (1985) 40-46, https://doi.org/10.13182/nse85-a17429. 
  34. Y. Wang, Y. Li, T. Zhang, E.E. Lewis, M.A. Smith, W.S. Yang, H. Wu, Generalized partitioned matrix acceleration for variational nodal diffusion method, Nucl. Sci. Eng. 193 (2019) 652-662, https://doi.org/10.1080/00295639.2018.1542883. 
  35. T. Zhang, H. Wu, L. Cao, Y. Li, An improved variational nodal method for the solution of the three-dimensional steady-state multi-group neutron transport equation, Nucl. Eng. Des. 337 (2018) 419-427, https://doi.org/10.1016/j.nucengdes.2018.07.009. 
  36. T. Zhang, J. Xiong, L. Liu, Z. Li, K. Zhuang, Development and implementation of an integral variational nodal method to the hexagonal geometry nuclear reactors, Ann. Nucl. Energy 131 (2019) 210-220, https://doi.org/10.1016/j.anucene.2019.03.031. 
  37. C. Geuzaine, J.F. Remacle, Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng. 79 (2009) 1309-1331, https://doi.org/10.1002/nme.2579. 
  38. L.F. Shampine, W.H. Press, B.P. Flannery, S. a Teukolsky, W.T.V. Vetterling, Numerical recipes, the art of scientific computing, Am. Math. Mon. 94 (1987) 889, https://doi.org/10.2307/2322833. 
  39. B.W. Park, H.G. Joo, Improved stiffness confinement method within the coarse mesh finite difference framework for efficient spatial kinetics calculation, Ann. Nucl. Energy 76 (2015) 200-208, https://doi.org/10.1016/j.anucene.2014.09.029. 
  40. E.Z. Muller, Z.J. Weiss, Benchmarking with the multigroup diffusion high-order response matrix method, Ann. Nucl. Energy 18 (1991) 535-544, https://doi.org/10.1016/0306-4549(91)90098-I. 
  41. Argonne Code Center, Benchmark Problem Book, 1977, https://doi.org/10.2172/5037820. 
  42. Y.A. Chao, Y.A. Shatilla, Conformal mapping and hexagonal nodal methods - II: implementation in the ANC-H code, Nucl. Sci. Eng. 121 (1995) 210-225, https://doi.org/10.13182/NSE95-A28559. 
  43. J.Y. Cho, C.H. Kim, Higher order polynomial expansion nodal method for hexagonal core neutronics analysis, Ann. Nucl. Energy 25 (1998), https://doi.org/10.1016/S0306-4549(97)00101-1. 
  44. D.I. Poston, M.A. Gibson, T. Godfroy, P.R. McClure, KRUSTY reactor design, Nucl. Technol. 206 (2020), https://doi.org/10.1080/00295450.2020.1725382. 
  45. W. Xiao, X. Li, P. Li, T. Zhang, X. Liu, High-fidelity multi-physics coupling study on advanced heat pipe reactor, Comput. Phys. Commun. 270 (2021), 108152, https://doi.org/10.1016/j.cpc.2021.108152. 
  46. P.K. Romano, N.E. Horelik, B.R. Herman, A.G. Nelson, B. Forget, K. Smith, OpenMC: a state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82 (2015), https://doi.org/10.1016/j.anucene.2014.07.048. 
  47. A. Vidal-Ferrandiz, R. Fayez, D. Ginestar, G. Verdu, Solution of the Lambda modes problem of a nuclear power reactor using an h-p finite element method, Ann. Nucl. Energy 72 (2014), https://doi.org/10.1016/j.anucene.2014.05.026. 
  48. S. Goluoglu, A Deterministic Method for Transient, Three-Dimensional Neutron Transport, The University of Tennessee-Knoxville, 1997. https://www.osti.gov/servlets/purl/776452/. 
  49. A. Seubert, A. Sureda, J. Bader, J. Lapins, M. Buck, E. Laurien, The 3-D time-dependent transport code TORT-TD and its coupling with the 3D thermal-hydraulic code ATTICA3D for HTGR applications, in: Nucl. Eng. Des., North-Holland, 2012, pp. 173-180, https://doi.org/10.1016/j.nucengdes.2011.09.067.