DOI QR코드

DOI QR Code

e-Pharmacophore modeling and in silico study of CD147 receptor against SARS-CoV-2 drugs

  • Nisha Kumari Pandit (Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar) ;
  • Simranjeet Singh Mann (Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar) ;
  • Anee Mohanty (Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar) ;
  • Sumer Singh Meena (Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar)
  • Received : 2023.02.01
  • Accepted : 2023.06.19
  • Published : 2023.06.30

Abstract

Coronavirus has left severe health impacts on the human population, globally. Still a significant number of cases are reported daily as no specific medications are available for its effective treatment. The presence of the CD147 receptor (human basigin) on the host cell facilitates the severe acute respiratory disease coronavirus 2 (SARS-CoV-2) infection. Therefore, the drugs that efficiently alter the formation of CD147 and spike protein complex could be the right drug candidate to inhibit the replication of SARS-CoV-2. Hence, an e-Pharmacophore model was developed based on the receptor-ligand cavity of CD147 protein which was further mapped against pre-existing drugs of coronavirus disease treatment. A total of seven drugs were found to be suited as pharmacophores out of 11 drugs screened which was further docked with CD147 protein using CDOCKER of Biovia discovery studio. The active site sphere of the prepared protein was 101.44, 87.84, and 97.17 along with the radius being 15.33 and the root-mean-square deviation value obtained was 0.73 Å. The protein minimization energy was calculated to be -30,328.81547 kcal/mol. The docking results showed ritonavir as the best fit as it demonstrated a higher CDOCKER energy (-57.30) with correspond to CDOCKER interaction energy (-53.38). However, authors further suggest in vitro studies to understand the potential activity of the ritonavir.

Keywords

References

  1. Dhar Chowdhury S, Oommen AM. Epidemiology of COVID-19. J Dig Endosc 2020;11:3-7. https://doi.org/10.1055/s-0040-1712187
  2. Pokhrel S, Chhetri R. A literature review on impact of COVID-19 pandemic on teaching and learning. High Educ Future 2021;8:133-141. https://doi.org/10.1177/2347631120983481
  3. Ciotti M, Ciccozzi M, Terrinoni A, Jiang WC, Wang CB, Bernardini S. The COVID-19 pandemic. Crit Rev Clin Lab Sci 2020;57:365-388. https://doi.org/10.1080/10408363.2020.1783198
  4. Liu C, von Brunn A, Zhu D. Cyclophilin A and CD147: novel therapeutic targets for the treatment of COVID-19. Med Drug Discov 2020;7:100056.
  5. Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev Rep 2020;16:434-440. https://doi.org/10.1007/s12015-020-09976-7
  6. Wang K, Chen W, Zhang Z, Deng Y, Lian JQ, Du P, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther 2020;5:283.
  7. Wang K, Chen W, Zhang Z, Deng Y, Lian JQ, Du P, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Trans Target Ther 2020;5:283.
  8. Geng J, Chen L, Yuan Y, Wang K, Wang Y, Qin C, et al. CD147 antibody specifically and effectively inhibits infection and cytokine storm of SARS-CoV-2 and its variants delta, alpha, beta, and gamma. Signal Transduct Target Ther 2021;6:347.
  9. Guindolet D, Gabison EE. Role of CD147 (EMMPRIN/Basigin) in tissue remodeling. Anat Rec (Hoboken) 2020;303:1584-1589. https://doi.org/10.1002/ar.24089
  10. Bian H, Zheng ZH, Wei D, Zhang Z, Kang WZ, Hao CQ, et al. Meplazumab treats COVID-19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial. Preprint at: https://doi.org/10.1101/2020.03.21.20040691 (2020).
  11. Khedkar SA, Malde AK, Coutinho EC, Srivastava S. Pharmacophore modeling in drug discovery and development: an overview. Med Chem 2007;3:187-197. https://doi.org/10.2174/157340607780059521
  12. Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 2010;15:444-450. https://doi.org/10.1016/j.drudis.2010.03.013
  13. Kutlushina A, Khakimova A, Madzhidov T, Polishchuk P. Ligand-based pharmacophore modeling using novel 3D pharmacophore signatures. Molecules 2018;23:3094.
  14. Zhou Y, Tang S, Chen T, Niu MM. Structure-based pharmacophore modeling, virtual screening, molecular docking and biological evaluation for identification of potential poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. Molecules 2019;24:4258.
  15. Torres PH, Sodero AC, Jofily P, Silva-Jr FP. Key Topics in molecular docking for drug design. Int J Mol Sci 2019;20:4574.
  16. Fan J, Fu A, Zhang L. Progress in molecular docking. Quant Biol 2019;7:83-89. https://doi.org/10.1007/s40484-019-0172-y
  17. Santos LH, Ferreira RS, Caffarena ER. Integrating molecular docking and molecular dynamics simulations. (Azevedo WF, ed.). In: Docking Screens for Drug Discovery New York: Springer New York, 2019. pp. 13-34.
  18. PRINCIPLE Trial Collaborative Group. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. Lancet 2021;397:1063-1074. https://doi.org/10.1016/S0140-6736(21)00461-X
  19. Shaffer L. 15 drugs being tested to treat COVID-19 and how they would work. Nat Med 2020 May 15 [Epub]. https://doi.rog/10.1038/d41591-020-00019-9.
  20. Firth A, Prathapan P. Azithromycin: the first broad-spectrum therapeutic. Eur J Med Chem 2020;207:112739.
  21. Stasi C, Fallani S, Voller F, Silvestri C. Treatment for COVID-19: an overview. Eur J Pharmacol 2020;889:173644.
  22. Sinha N, Balayla G. Hydroxychloroquine and COVID-19. Postgrad Med J 2020;96:550-555. https://doi.org/10.1136/postgradmedj-2020-137785
  23. Shippey EA, Wagler VD, Collamer AN. Hydroxychloroquine: an old drug with new relevance. Cleve Clin J Med 2018;85:459-467. https://doi.org/10.3949/ccjm.85a.17034
  24. Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res 2020;177:104762.
  25. Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020;57:279-283. https://doi.org/10.1016/j.jcrc.2020.03.005
  26. Yao TT, Qian JD, Zhu WY, Wang Y, Wang GQ. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option. J Med Virol 2020;92:556-563. https://doi.org/10.1002/jmv.25729
  27. Fintelman-Rodrigues N, Sacramento CQ, Ribeiro Lima C, Souza da Silva F, Ferreira AC, Mattos M, et al. Atazanavir, alone or in combination with ritonavir, inhibits SARS-CoV-2 replication and proinflammatory cytokine production. Antimicrob Agents Chemother 2020;64:e00825-20.
  28. Zhuravel SV, Khmelnitskiy OK, Burlaka OO, Gritsan AI, Goloshchekin BM, Kim S, et al. Nafamostat in hospitalized patients with moderate to severe COVID-19 pneumonia: a randomised Phase II clinical trial. EClinicalMedicine 2021;41:101169.
  29. Uno Y. Camostat mesilate therapy for COVID-19. Intern Emerg Med 2020;15:1577-1578. https://doi.org/10.1007/s11739-020-02345-9
  30. Janowitz T, Gablenz E, Pattinson D, Wang TC, Conigliaro J, Tracey K, et al. Famotidine use and quantitative symptom tracking for COVID-19 in non-hospitalised patients: a case series. Gut 2020;69:1592-1597. https://doi.org/10.1136/gutjnl-2020-321852
  31. Costanzo M, De Giglio MAR, Roviello GN. SARS-CoV-2: recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus. Curr Med Chem 2020;27:4536-4541. https://doi.org/10.2174/0929867327666200416131117
  32. Nojomi M, Yassin Z, Keyvani H, Makiani MJ, Roham M, Laali A, et al. Effect of arbidol (umifenovir) on COVID-19: a randomized controlled trial. BMC Infect Dis 2020;20:954.
  33. Lokhande AS, Devarajan PV. A review on possible mechanistic insights of nitazoxanide for repurposing in COVID-19. Eur J Pharmacol 2021;891:173748.
  34. Seftel D, Boulware DR. Prospective cohort of fluvoxamine for early treatment of coronavirus disease 19. Open Forum Infect Dis 2021;8:ofab050.
  35. Wu G, Robertson DH, Brooks CL, Vieth M. Detailed analysis of grid-based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm. J Comput Chem 2003;24:1549-1562. https://doi.org/10.1002/jcc.10306