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Introduction 

Pathogenic mycobacteria are significant sources of illness in humans and animals. Despite 
the accessibility of antibiotics and chemotherapeutic candidates that are efficient against 
some mycobacteria, the emergence of drug-resistant strains necessitates the development 
of new active molecules and intervention strategies [1-3]. Within more than 130 years 
since discovering Mycobacterium tuberculosis (MTB) as the causative microorganism re-
sponsible for human tuberculosis (TB) by Robert Koch, numerous scientific advances 
have been made to help cope with this significant pathogen. However, despite this prog-
ress, MTB still holds many unresolved secrets. Much work remains to be done to trans-
late the essential findings from recent research into novel strategies against the pathogen 
[4-7]. Tuberculosis, one of the ancient recorded human diseases, continues to be one of 
the leading causes of death, claiming two million lives annually. TB affects bone, the cen-
tral nervous system, and many other physiological systems. However, it is essentially a 
pulmonary illness caused by the precipitation of aerosolized MTB onto lung alveolar sur-
faces. From this point, the causes of the illness are contingent on the immunological reac-
tivity of the host to varying degrees [8-10].  
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MTB has an irregular, highly recurrent life cycle that encom-
passes a varied and heterogeneous spectrum of habitats and physi-
ologic states, many of which are unique from other infections. It is 
not unanticipated that MTB has conceived a specific set of meta-
bolic capacities to facilitate its adaption to and movement across 
hosts, given its peculiar, if not distinctive, environment [11-13]. 

Numerous advancements in computational biology have made 
it possible to construct diverse technologies and strategies for pre-
dicting protein structure and the identification of sequence com-
monalities for active investigation and the analysis of active site 
residue relationships [14-16]. A bioinformatics examination of the 
proteins enables one to assess their three-dimensional architectur-
al structure, categorize novel features, investigate specific processes 
to understand our biological lineage, uncover different clusters, 
and assign the proteins’ function. The obtained information can 
also convey reasonable pharmacological strategies and assets in 
developing promising anti-disease medications [17-19]. The hy-
pothetical protein from MTB consists of disulfide oxidoreductase 
involved in the catalyzation of dithiol oxidation and/or disulfide 
reduction of target sites in MTB. 

Methods 

Sequence retrieval 
The amino acid sequence of the protein was obtained from the 
NCBI database in FASTA format. The physicochemical properties 
were determined using ProtParam (ExPASy) and SMS v.2.0 pro-
grams. Afterwards, the subcellular location of the selected protein 
was determined. This study also anticipated the protein family, su-
perfamily, domain, coil, and folding pattern of the protein. The 
STRING program was used for protein protein interaction deter-
mination. Moreover, secondary structural documentation was 
performed using the SOPMA, DISOPRED (v. 3.0), and 
SPIPRED (v. 4.0) programs. The tertiary structure was predicted 
using the Modeller program with the HHpred database and vali-
dated by the PROCHECK, Verify3D, and ProSA-web tools. Fur-
thermore, the CASTp server was used for active site determination 
of the selected protein present in MTB. Additionally, the antige-
nicity, allergenicity, and toxicity properties of the protein were de-
termined. 

Physicochemical properties 
The physicochemical parameters of the protein were evaluated by 
the ProtParam assessment tool of the ExPASy server program [20] 
and the SMS v.2.0 program (https://www.bioinformatics.org/
sms2/index.html, accessed on September 10, 2022). 

Subcellular localization identification 
The CELLO (v.2.5) [21,22], PSORTb (v3.0) [23], HMMTOP 
(v.2.0) [24,25], and TMHMM (v.2.0) [26,27] programs are used 
to detect the subcellular localization and protein topology analysis. 

Prediction of the protein family, superfamily, domain, coil, 
and folding pattern 
The NCBI CD tool was used to anticipate the conserved domain 
[28]. The GenomeNet [29], Pfam program [30], SuperFamily 
program [31], and ScanProsite tool [32] used for the evolutionary 
relationships determination. 

Protein-protein interaction 
The STRING program (v.11.5) [33] was used to determine the 
protein-protein (pr-pr) interaction. 

Secondary structural assessment 
The SOPMA program was used following the default parameters 
similarity threshold (8), window width (17), and the number of 
states (4) [34]. DISOPRED (v.3.0) [35] and the SPIPRED (v.4.0) 
[36] used for the determination of further secondary characteris-
tics and protein topology.  

Structure prediction and validation  
The tertiary structure of the protein is generated by using the 
Modeller program [37]. The HHpred tool selected the most suit-
able template for protein structure anticipation [38-40]. The 
PROCHECK and Verify3D programs of the SAVES (v.6.0) tool 
were used for the structural validation of the protein [41]. Addi-
tionally, the ProSA-web program was used to calculate the Z-score 
and validate the modeled 3D structure of the protein [42]. 

Active sites determination 
The CASTp program was used to determine the active sites in the 
protein [43]. 

Antigenicity, allergenicity, and toxicity 
The VaxiJen (v2.0) program [44] was used to determine the pro-
tein’s antigenicity. Moreover, the AllerTOP (v. 2.0) program was 
used to predict the allergenicity of the protein [45]. The Toxin-
Pred program [46] was used to demonstrate the toxicity of the 
protein. 
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Results and Discussion 

Sequence retrieval 
The protein’s amino acid sequence was retrieved from the NCBI 
database in FASTA format. The protein contains 173 amino acids 
(Table 1). 

Physicochemical parameters determination 
By examining the properties of each amino acid in the protein, it is 
possible to comprehend how its physicochemical properties were 
characterized. The ProtParam program estimated the physico-
chemical characteristics. The protein comprises 173 amino acids, 

whereas Ala (n = 30, 17.3%) is the most abundant amino acid in 
the protein sequence (Table 2, Fig. 1). There is no His (H) in the 
protein sequence. The half-life of a protein is defined as the time 
required for the radio-labeled focal protein concentration to fall by 
50% relative to the quantity at the beginning of the chasing [47]. 
The estimated half-life for the protein of about 30 h (mammalian 
reticulocytes, in vitro), >20 h (yeast, in vivo), and >10 h (Escherichia 
coli, in vivo). The demonstrated isoelectric point (pI), the total 
number of atoms, and molecular weight as of 5.19, (4.98*), 2,572, 
and 18,382.98 Dalton (Table 2). 

Moreover, the total number of positively (Arg + Lys) and nega-
tively charged residues (Asp + Glu) are 10 and 11 in the protein. 
The instability index (29.40) demonstrates protein stability, 
whereas the aliphatic index (86.42) denotes protein balance over a 
broad temperature scale. The grand average of hydropathicity 
(GRAVY, 0.334) determines the enhancement of thermostability 
[48]. 

Subcellular location identification and protein topology 
prediction 
The computerized estimation of the subcellular location of bacte-
rial proteins is essential for proteome categorization and for select-
ing novel therapeutic targets and vaccination candidates. Various 
subcellular localization predictors have been created in recent 
years, including both generic localized and feature-based predic-
tors [49-52]. The CELLO (v.2.5) and PSORTb (v3.0) predicted 
the subcellular location of the protein as extracellular (Table 3). 

Moreover, transmembrane helix identification in integral mem-
brane proteins is an essential bioinformatics component. In addi-
tion to predicting individual transmembrane helices, the most ef-

Table 1. Protein retrieval

Protein individuality Protein information
Locus OHO19689
Amino acid 173 aa
Definition Hypothetical protein BBW91_12415 [Mycobacteri-

um tuberculosis]
Accession OHO19689
Version OHO19689.1
GenBank ID OHO19689.1
Source Mycobacterium tuberculosis (Mycobacterium tuber-

culosis variant tuberculosis)
Organism Mycobacterium tuberculosis
FASTA sequence >OHO19689.1 hypothetical protein BBW91_12415 

[Mycobacterium tuberculosis]
MSLRLVSPIKAFADGIVAVAIAVVLMFGLANTPRAVAAD-

ERLQFTATTLSGAPFDGASLQGKPAVLWFWTPWCP-
FCNAEAPSLSQVAAANPAVTFVGIATRADVGAMQS-
FVSKYNLNFTNLN ADGVIWARYNVPWQPAFV-
FYRADGTSTFVNNPTAAMSQDELSGRVAALTS

Table 2. Physicochemical parameters

Parameter Value
Molecular weight 18,382.98
Formula C835H1274N218O239S6

Theoretical pI 5.19, 4.98a

Total number of atoms 2,572
Total number of positively charged residues (Arg + Lys) 10
Total number of negatively charged residues (Asp + Glu) 11
The estimated half-life a)  30 h (mammalian reticulocytes, in vitro)

b)  >20 h (yeast, in vivo)
c)  >10 h (Escherichia coli, in vivo)

Aliphatic index 86.42
Instability index (II) 29.40
Grand average of hydropathicity (GRAVY) 0.334

apI calculated by the SMS v.2.0.
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Fig. 1. Amino acid composition. The protein contains Ala (30, 17.3%), Arg (7, 4.0%), Asn (10, 5.8%), Asp (8, 4.6%), Cys (2, 1.2%), Gln (6, 3.5%), 
Glu (3, 1.7%), Gly (10, 5.8%), Ile (5, 2.9%), Leu (13, 7.5%), Lys (3, 1.7%), Met (4, 2.3%), Phe (12, 6.9%), Pro (11, 6.4%), Ser (12, 6.9%), Thr (12, 
6.9%), Trp (5, 2.9%), Tyr (3, 1.7%), and Val (17, 9.8%).

Table 3. Subcellular localization and protein topology analysis 
results

Analysis Result
CELLO (v2.5) Extracellular
PSORTb (v3.0) Extracellular
HMMTOP (v.2.0) 1 Transmembrane helix
TMHMM (v.2.0) 1 Transmembrane helix

fective approaches to date strive to predict the complete topology 
of the protein, including the entire count of transmembrane heli-
ces and their direction related to the membrane [27,53]. The 
TMHMM (v.2.0) and HMMTOP (v.2.0) programs anticipated 
the protein has a single transmembrane helix (at 12–30 region in 
the protein residue). Most membrane proteins’ transmembrane 
portions have helices as their secondary structures. When a mem-
brane protein is conducting its task, whether sending messages 
throughout the membrane or assisting an ion channel in unlocking 
or closing, the transmembrane helices frequently move together 
[54-57]. 

Prediction of the protein family, superfamily, domain, coil, 
and folding pattern 
The Conserved Domain Database (CDD) intends to annotate 
biomolecular sequences with the evolutionarily conserved protein 
domain placement. A repository of pre-computed domain identi-
fication is kept for NCBI’s Entrez database-tracked proteins, and 
real-time search facilities are provided. CDD also facilitates com-
parative analysis of protein families employing conserved domain 
architectures, and a new curation effort focuses on giving function-
al categorization of various subfamily structures [58-60]. The 
CDD tool classified the protein as protein disulfide oxidoreduc-
tase (domain architecture ID 10122406, accession ID cd03011) 
associated with the catalyzation of dithiol oxidation or disulfide re-
duction of target proteins [61]. 

The GenomeNet program identified six different motifs, includ-
ing AhpC-TSA (position between 43–144, independent E-value 
6.8 × 10-15), Redoxin (position between 44–137, independent 
E-value 1.60 × 10-10), thioredoxin (position between 52–114, in-
dependent E-value 1.0 × 10-4), thioredoxin-2 (position between 
59–164, independent E-value 4.30 × 10-5), thioredoxin-8 (position 
between 61–146, independent E-value 3.6 × 10-4), and thioredox-
in-9 (position between 57–108, independent E-value 8.3 × 10-2). 
The Pfam program [62] and the ScanProsite tool also validated 
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the six motifs, including AhpC-TSA (accession ID PF00578), Re-
doxin (accession ID PF08534), thioredoxin (accession ID 
PF00085), thioredoxin-2 (accession ID PF13098), thioredoxin-8 
(accession ID PF13905), and thioredoxin-9 (accession ID 
PF14595). Moreover, the SuperFamily program anticipated the 
protein as a member of the thioredoxin-like superfamily (accession 
ID 52833, E-value 2.1 × 10-30). Thioredoxins are small proteins 
composed of around one hundred amino acid residues that partic-
ipate in numerous redox processes. Thioredoxins operate by re-
versibly oxidizing an active center disulfide bond. An intramolecu-
lar disulfide bond connects the two cysteine residues in reduced or 
oxidized forms [63-68]. 

Protein-protein interaction 
The cellular machinery is supported by proteins as well as their 
functional connections. For a comprehensive comprehension of 
biological events, their connection network must be considered, 
yet the existing knowledge on protein-protein relationships is in-
adequate and of different annotation granularity and trustworthi-
ness. The STRING database attempts to gather, assess, and inte-
grate all publicly accessible sources of knowledge on protein-pro-

tein interactions and supplement them with computational predic-
tions. It seeks to establish a worldwide network that is complete 
and objective, incorporating both primary (physical) and second-
ary (functional) linkages [69-72]. The STRING program (v.11.5) 
was performed to determine the protein-protein (pr-pr) interac-
tion (Fig. 2). The string program demonstrated the functional fel-
lows with the scores as of trxC (0.795), Rv2876 (0.734), dipZ 
(0.884), Rv1929c (Rv1929c), mpt63 (0.731), Rv1676 (0.818), 
Rv2968c (0.798), Rv1929c (0.795), Rv2969c (Rv2969c), and 
Rv1138c (0.763). 

The trxC, Rv2876, dipZ, Rv1929c, mpt63, Rv1676, Rv2968c, 
Rv1929c, Rv2969c, and Rv1138c are the thioredoxin that partici-
pates in multiple redox reactions through the reversible oxidation of 
its active center dithiol to a disulfide and catalyzes dithiol-disulfide 
exchange reactions, possible conserved transmembrane protein, 
cytochrome c-type biogenesis protein, conserved hypothetical pro-
tein, immunogenic protein mpt63 (antigen mpt63/mpb63), un-
characterized protein, probable conserved integral membrane pro-
tein, conserved hypothetical protein (uncharacterized), possible 
conserved membrane or exported protein, and possible conserved 
membrane or exported protein, respectively [73-76]. The mtp53 

Fig. 2. The STRING network determines the protein-protein (pr-pr) interactions. For node content: colored nodes–query proteins and first 
shell of interactors, white nodes–the second shell of interactors, empty nodes–proteins of unknown 3D structure, filled nodes–some 3D 
structure is known or predicted.
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Fig. 3. Secondary structural elements. The alpha helix (n = 66, 
38.15%), extended strand (n = 39, 22.54%), beta-turn (n = 13, 
7.52%), and random coil (n = 55, 31.79%).

Fig. 4. The secondary structural inquiry and assessments. (A) The amino acid types. (B) Sequence plot. (C) Secondary structure.

is a soluble secreted antigen mpt53 precursor, disulfide oxidore-
ductase, that speeds up the oxidation of diminished, unfolded se-
creted proteins to make disulfide bonds [77].  

Secondary structural assessment 
Static high-resolution structures have contributed significantly to 
our protein structure and molecular activity knowledge. As struc-
tural biology has progressed, it has become evident that high-res-
olution structures alone cannot adequately represent the molecu-
lar basis for the structure and the action of proteins in solution 
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BB
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[78-80]. The secondary structural components, such as helix, 
sheet, coil, and turn, strongly correlate with proteins' operation, 
architecture, and interaction [81-84]. The SOPMA program 
identified the alpha-helix (n = 66, 38.15%), extended strand (n = 
39, 22.54%), beta-turn (n = 13, 7.52%), and random coil (n = 55, 
31.79%) (Fig. 3). 

The SPIPRED (v.4.0) and the DISOPRED (v.3.0) programs 
were used to determine the secondary structure, sequence plot, 
and transmembrane topology (Fig. 4). 

Structure prediction and validation 
Homology modeling is a technique for constructing the three-di-
mensional structures of proteins based on their primary sequence 
and using existing information from structural matches to other 
proteins. Sequence/structure compatibility is improved in the ho-
mology modeling procedure, a framework is constructed, and side 
chains are appended [85,86]. The HHpred is an accessible, collab-
orative web service for protein bioinformatics analysis. Experts 
and non-experts have access to a vast array of integrated out-
side-generated, cutting-edge bioinformatics tools [87]. 

The HHpred is a robust technology for remote homology deter-
mination and structure prediction, first constructed as hidden 
Markov models as well as popularized by the first pairwise com-
parison study of homologous protein patterns. It permits several 
repositories, such as PDB, CDD, Pfam, SMART, SCOP, and COG 
[38]. It accepts a single query array or many lineups as an entry 
and provides the results via a user-friendly layout similar to PSI-

Elements
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Secondary structure
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BLAST. Local or worldwide integration and the discovery of sec-
ondary systems are among the screening capabilities. HHpred can 
construct multiple inquiry prototypes, various model alignments 
with numerous schemes, and three-dimensional representations 
calculated with the Modeller program from these combinations 
[39]. The most suitable template (HHpred ID: 1LU4_A, PDB 
ID: 1LU4) was selected with the probability (99.92%), E-value 1.7 
× 10-22, and target length of 136. 

Moreover, the PROCHECK program of the SAVES (v.6.0) tool 
was used for the Ramachandran plot assessment (Fig. 5). The 
amino acid sequences in the most favored regions, residues in ad-
ditional allowed regions, the number of glycine residues (shown as 
triangles), and the number of proline residues is 9 are 106 
(91.4%), 10 (8.6%), 8, and 9, respectively. Likewise, the Verify3D 
program demonstrated as 100% of the residues averaged a 3D-1D 
score (≥0.2), whereas at least 80% of the amino acids scored 
(≥0.2) in the 3D/1D profile to pass [88]. Identifying flaws in the-
oretical and experimental representations of protein architecture is 
a fundamental challenge in structural biology. ProSA is a well-
known application with a broad user base commonly used to im-
prove and assess empirical protein architectures and structure pro-
jection and analysis. Protein structural investigation is often a de-
manding and laborious process [42]. In addition, the ProSA-web 
calculated the Z-score as -6.53. 

Active sites determination of the protein 
CASTp is a database platform capable of locating zones on pro-
teins, outlining their outlines, determining the dimensions of the 

regions, and calculating their area. This incorporates pockets on 
the surface of proteins and hidden vacuums within proteins. The 
computation includes a pocket and volume spectrum or vacuum, 
which are mathematically calculated by a solvent-accessible surface 
(Richards surface) and molecular surface model (surface of Con-
nolly). CASTp could be used to study surface characteristics and 
protein functioning regions. CASTp delivers a graphical, user-in-
terface-flexible, dynamic display and on-the-fly assessment of us-
er-submitted constructions [43]. The CASTp v.3.0 program 
demonstrated 11 different active sites in the protein. The highest 
functioning zones of the modeled protein were recognized be-
tween the area of 80.526 and the volume of 37.099 (Fig. 6). 

Antigenicity, allergenicity, and toxicity 
Vaccine development in the post-genomic age often commences 
with the in silico assessment of genome data, with the most likely 
defensive antigens anticipated instead of the cultivation of patho-
genic bacteria. Despite the apparent benefits of this method, such 
as speed and cost-effectiveness, its success is contingent on the 
precision of antigen prediction. Antigens are identified using se-
quence alignment in most cases [89-93]. This situation is hazard-
ous for several reasons. Specific proteins may share comparable 
structures and biological activities despite visible sequence simi-
larity. The antigenicity of a sequence may be encoded in a subtle 
and convoluted manner, making straightforward detection by se-
quence alignment impossible [94-96]. Considering the protein’s 
physical and chemical attributes, the VaxiJen program projected 
that it was antigenic, with the baseline threshold of 0.4 used as the 

Fig. 5. Tertiary structural assessment. (A) The 3D structure anticipated by Modeller. (B) The 3D structural assessment by Ramachandran plot 
statistics obtained from the SAVES program. The residues in most favored regions (n = 106, 91.4%), residues in additional allowed regions 
(n = 10, 8.6%), the number of glycine residues (shown as triangles) is 8, and the number of proline residues is 9. (C) The Z-score (–6.53) to 
assess the 3D structure.

BB CCAA
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Fig. 6. Active site determination. (A) Active sites of the protein. The “red sphere” indicates the active sites of the protein. (B) The amino acid 
residues in the active site (blue color).

antigenicity parameter. The overall anticipated antigenicity score 
was measured as 0.5936. 

Allergy overreaches the immune function to a formerly exposed, 
normally innocuous chemical, leading to skin rash, mucous mem-
brane swelling, sneezing or wheezing, or other aberrant symp-
toms. The rising prevalence of altered proteins in food, commer-
cial items, laundry detergent, medical therapies, and diagnostics 
renders anticipating and detecting possible allergies a significant 
social concern. Using bioinformatics, allergen prediction has been 
extensively studied, and several tools have been created over the 
past decade; many are accessible on the complimentary internet 
[97,98]. Furthermore, the AllerTOP (v. 2.0) anticipated the pro-
tein as of probable non-allergen protein. Over the last several de-
cades, scientific study has focused on developing peptide/pro-
tein-based treatments for various ailments. With various benefits 
over small molecules, including high selectivity, significant pene-
tration, and simplicity of production, peptides have emerged as 
prospective therapeutic agents against various disorders. However, 
the toxicity of peptide- and protein-based therapies is one of their 
limitations. To forecast the toxicity of peptides and proteins, we 
built in silico models in this work [99-101]. The ToxinPred pro-
gram predicted the protein as nontoxic. 

Adaptation between pathogens and their innholders has result-
ed in several metabolic strategies employed by intracellular infec-
tions to cope with the defense responses and nutritional insuffi-
ciencies throughout infection. Comprehending how proteins act is 
essential for explaining how they operate, and this protein contains 

disulfide oxidoreductase, a crucial enzyme associated with the oxi-
dation of dithiol and/or the reduction of disulfide in target sites. 
This study reveals the fundamental characteristics of the protein of 
MTB. Moreover, the protein-protein interactions, active amino 
acid residues, allergenicity, antigenicity, and toxicity uncover the 
protein potentiality of MTB infection. 
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