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Introduction 

The estimation of divergence between populations and species is a central topic in popu-
lation genetics and evolution. The difficulty in determining divergence from genetic data 
is due to the presence of opposing evolutionary processes. For instance, genetic drift in-
creases divergence, and gene flow reduces it [1,2]. The isolation-with-migration (IM) 
model is a widely adopted demographic model that seeks to reconcile conflicting signals. 
It models the divergence of two populations from a common ancestral population at a 
specific time in the past, and accounts for the exchange of migrants between the two pop-
ulations [1-4]. 

DNA sequence alignments are commonly used data in the study of IM models [2,5]. 
IM models typically assume that alignments are shaped exclusively by neutral evolution-
ary processes and do not take into account the influence of selection, with an absence of 
recombination within a locus and free recombination between loci [5]. It is deemed es-
sential to confirm that the DNA sequence alignments are orthologs, because the relation-
ship between homologous DNA sequences is believed to be result from past branching 
processes [6]. To minimize the potential for recombination within a locus, filtering using 
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a four-gamete test [7] should be employed. With the increasing 
availability of data from the nuclear portions of genomes, it has be-
come possible to obtain data with a history that may include re-
combination events [6]. However, the four-gamete test has limita-
tions; it may not detect all recombination events [6,7], and meth-
ods for filtering genomic data based on four-gamete test results 
have not been thoroughly evaluated. 

Hey and Wang [6] conducted a simulation study on the effect of 
four-gamete filtering on IM model inference using the IMa3 pro-
gram [8]. To assess the impact of the four-gamete test, they com-
pared three methods of non-recombined block sampling: the lon-
gest interval, overlapping interval, and random non-overlapping 
interval sampling. The results showed that the distributions of the 
migration rate parameters were flatter with recombination, and the 
distribution of the maximum a posteriori (MAP) values shifted to 
the right. This implies that using four-gamete filtering reduces the 
statistical power for detecting non-zero migration rates. They also 
found that random intervals performed better, although using the 
longest interval led to higher-resolution results because of using 
more data. These results can be applied to genealogy-sam-
pling-based methods for IM models or subsets of IM models. 

The study conducted by Hey and Wang [6] provides a significant 
opportunity for further investigation into the impact of recombina-
tion and the filtering method. First, it is important to examine the 
sources of estimation errors present in their findings. These errors 
arise from estimating two levels of uncertainty: the distribution of 
DNA sequences given a genealogy and that of genealogy given an 
IM model [2,5]. Additionally, errors in detecting recombination 
breakpoints can also contribute to the overall errors. Hence, it is 
necessary to understand the source of errors in Hey and Wang’s [6] 
study and to differentiate between the estimation errors arising 
from the two levels of uncertainty in the IM model inference and 
from recombination detection. This information is crucial for im-
proving the accuracy of further studies and fully understanding the 
impact of the recombination and filtering methods. 

Secondly, it is important to extend Hey and Wang’s study [6] to 
encompass genomic data. As the availability of genomic data in-
creases, software such as MIST [1] has been developed to analyze 
large amounts of genomic data [2]. However, the study conducted 
by Hey and Wang [6] focuses on data containing 10–50 loci. 
Hence, it is imperative to extend the investigation to include an 
analysis of a larger number of loci and to examine whether the 
same results obtained by Hey and Wang [6] are observed with a 
large number of loci. Therefore, it is necessary to evaluate the con-
sistency of the parameter estimators of IM models with a large 
number of loci. 

This study aims to extend the study of Hey and Wang [6] and 
conduct a simulation-based investigation that examines the impact 
of recombination on the estimation of IM models using the MIST 
program. First, this study aims to assess the consistency of the pa-
rameter estimators, by analyzing up to 1,000 loci. Second, in order 
to separate the sources of the errors, we focused on errors arising 
from the level of uncertainty in the distribution of genealogies giv-
en an IM model. To accomplish this, we assumed that recombina-
tion breakpoints were known and analyzed the true gene trees of 
loci determined by the random interval sampling. This study dis-
regarded estimation errors of gene trees and recombination break-
point detection, focusing solely on the effect of recombination. 

Methods 

The impact of recombination on gene trees 
This study examined how recombination affects the inference of 
an IM model. Genetic drift, one of the fundamental mechanisms 
of evolution, results in changes in the allele frequencies in a popu-
lation by random chance [5]. The evolutionary paths of gene cop-
ies by genetic drift can be represented as a gene tree, and the co-
alescent theory [9] is commonly employed to describe the distri-
bution of the gene tree of a locus. However, the presence of recom-
bination events can complicate evolutionary history (Fig. 1A) and, 
therefore, affect the inference of an IM model. To isolate the im-
pact of recombination on the IM model inference via gene trees, 
our study focused on analyzing the true gene trees of loci, which 
were determined using the true recombination breakpoints.  

Recombination events can result in the formation of complex 
network-like structures. For example, Fig. 1A illustrates the com-
plex evolutionary history of DNA sequences A–G with three re-
combination events. The first recombination occurred between 
the white and dashed DNA sequences. The second recombination 
occurred between the grey and white DNA sequences. Finally, the 
third recombination occurred between descendants of previsouly 
recombined sequences. The three recombination breakpoints in 
alignment A–G (Fig. 1B) produced four non-recombined blocks, 
each with a different gene tree as a result of recombination events. 

In this study, we simulated complex evolutionary histories with 
and without recombination. Given the true recombination events, 
we were able to determine the non-recombined genetic blocks and 
their corresponding true gene trees. We applied random interval 
samplings based on the results of the study by Hey and Wang [6]. 
For instance, using the random interval sampling, we analyzed the 
gene tree corresponding to a randomly selected block from the 
four blocks defined by the recombination breakpoints in Fig. 1C. 
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Fig. 1. (A) Illustration of a complex evolutionary history with three recombination events. (B) The DNA alignment resulting from the 
evolutionary history in (A). The alignment is composed of four non-recombined blocks because of three recombination breakpoints. (C) 
Different gene trees of each of the four blocks in (B).

IM model inference from gene trees 
In a 2-population IM model, two populations of effective sizes, N1 
and N2, have diverged from a common ancestral population of ef-
fective size N3 at generation t in the past. The IM model also takes 
into account migration between the two populations. While M1 is 
the proportion of population 1 that is replaced by migrants from 
population 2 per generation, M2 is the proportion of population 2 
that is replaced by migrants from population 1 in each generation. 
The IM model provides a comprehensive framework for studying 
population divergence with migration dynamics between two 
populations over time. The calculation of the probability of align-
ments under an IM model is achieved through the integration of 
two levels of uncertainty: (1) calculating the probability distribu-
tion of an alignment given a genealogy using a mutation or substi-
tution model [10-13] and (2) calculating the probability distribu-
tion of a genealogy given a demographic model with parameters Ψ 
using a stochastic process such as coalescent processes [9,14]. In-
tegration over possible genealogies is typically performed using a 
Markov chain Monte Carlo (MCMC) simulation [1-4,8,15]. 

In this study, we utilize the MIST program to estimate the de-
mographic parameters of an IM using gene trees. The MIST pro-
gram implements a two-step analysis to infer the IM model from 
DNA alignments [1]. In the first step, gene trees of loci without 
migrations are simulated through an MCMC simulation, without 
needing any prior information about the demographic model, 
thereby mitigating the issue of slow mixing. In the second step, the 
joint posterior density of the demographic parameters in the IM 

model is estimated from the sampled gene trees, and the MAP es-
timations of all demographic parameters are obtained. Rather than 
sampling migrations and the underlying demographic model pa-
rameters in the first step, integration over potential migrations is 
carried out in the second step when the posterior distribution of 
the IM model is calculated. The MIST program can be used to in-
fer an IM model from true or estimated gene trees [16]. 

By utilizing the second stage of the MIST program, we calculat-
ed the posterior distribution of an IM model from gene trees, with 
uniform priors for demographic parameters, which served as the 
likelihood of the IM model in this study. The MAP estimates of 
the parameters obtained in stage 2 were equivalent to the maxi-
mum likelihood estimates of the demographic parameters. 

Simulation setting 
In this study, we adopted the simulation setting in Hey and Wang 
[6]. Similar to Hey and Wang [6], we set the neutral mutation rate 
per generation per base pair to μ = 10-8, and hence the mutation 
rate for the entire locus of length 5,000 base pairs to u = 10-8 × 
5,000. We denoted r as the probability of a cross-over per genera-
tion between the ends of the locus. For clarity and simplicity in 
notation [15], we use demographic parameters scaled by the mu-
tation rate throughout the remainder of this manuscript (Table 1). 
Similar to the simulation setting in Hey and Wang [6], the scaled 
population sizes are assumed to be equal to θi = 4Niu = 10 for i = 1, 
2, 3 in the entire simulation. Splitting time τ = tu changes as 0.5, 
2.5, 10 in terms of the number of mutations. The migration rates 

AA BB CC

Block 1 

Block 2

Block 3

Block 4
Blo

ck 
1 

Blo
ck 

2 

Blo
ck 

3 

Blo
ck 

4 

3 / 7https://doi.org/10.5808/gi.23016

Genomics & Informatics 2023;21(2):e27

https://doi.org/10.5808/gi.23016


mi = Mi/u for i = 1, 2 are expressed as the number of migrations per 
mutation. Following Hey and Wang [6], we examine two scenari-
os: no migration with m1 = m2 = 0 and unidirectional migration 
with m1 = 0.1 and m2 = 0 when the splitting time of an IM model is 
10 (τ = 10). The recombination rate per mutation ρ = r/u is varied 
as 0, 0.2, 1, and 5. It is important to note that ρ = 0 indicates no re-
combination within a locus, which is a typical assumption for the 
IM model inference. 

As this study aimed to assess the consistency of demographic 
parameters in an IM model, we consider 10, 100, and 1,000 loci 
for each case. We applied the ms program [17] to simulate the 
gene trees and recombination events. In all cases, gene trees with 
four tips were simulated as two sequences were sampled from each 
population at each locus. For each scenario, 100 replicates were 
generated. When the MIST program was used to analyze the sim-
ulated gene trees, we set the uniform priors with upper bounds of 
50 for population sizes, 0.2 for migration rates, and 20 for the split-
ting time for all cases. 

Results 

We evaluated the effect of recombination on the distribution of 
gene trees and IM model inferences. Therefore, we used the true 
recombination breakpoints and analyzed true gene trees of ran-
domly selected non-recombined loci using the MIST program. 

First, we examined the consistency of the estimators of the IM 
model parameters in the absence of recombination. (i.e., ρ = 0) 
When there are no migrations (m1 = 0, m2 = 0), the estimates of 
the six parameters converged to their respective true value as the 
number of loci increased, as shown in Figs. 2 and 3 by grey lines 
with empty circles. The same consistency was observed when m1 
= 0.1, as depicted by the grey lines with empty circles in Fig. 4. 
Moreover, in all cases of ρ = 0, the standard errors decrease with 
the number of loci. 

In the presence of recombination, the estimates of the IM model 
parameters were more biased than those in the absence of recom-
bination, regardless of the absence of migration (m1 = 0, m2 = 0) or 
the presence of migration (m1 = 0.1). For the case of no migrations 

(m1 = 0, m2 = 0), population sizes tended to be overestimated as 
the recombination rate increased when using 100 loci or more 
(Fig. 2). In specific, θ^1 and θ^2 were significantly increased as ρ in-
creased (p < 0.001 for the slope of the regression line) at both in-
termediate and high splitting times, but the increase was only sig-
nificant (p < 0.001) at the low splitting time (τ = 0.5), as depicted 
in Fig. 2A and B. In all cases of splitting times and the number of 
loci (Fig. 2C), θ^3 was significantly increased with an increasing re-
combination rate (p < 0.001). In addition, the estimate of the an-
cestral common population size θ3 (Fig. 2C) exhibited greater 
bias than estimates of the other two population sizes, θ1 and θ2 
(Fig. 2A and 2B). At intermediate splitting time τ = 2.5 and 1,000 
loci, the bias of θ^3 was 0.6138, 1.7131, and 2.3964 as ρ increased 
from 0.2 to 5. At high splitting time τ = 10, the bias of θ^3 was alle-
viated somewhat as 0.7184, 1.515, and 1.86. The estimates of the 
migration rates and splitting time appeared to approach the true 
values with an increasing number of loci, as depicted in Fig. 3. 
The standard errors of all parameter estimators showed a substan-
tial reduction with an increasing number of loci in the presence of 
recombination (Figs. 2 and 3). 

For the case of m1 = 0.1, population sizes were significantly in-
creased as ρ increased (p < 0.001) when using 100 or more loci 
(Fig. 4A–4C). Moreover, the biases in population size estimations 
were more severe than those in the case of no migration. For ex-
ample, at high splitting time τ = 10, the bias of θ^3 was 1.59039, 
1.6164, and 1.9518. However, the estimate of the non-zero migra-
tion rate m^1 was underestimated as the recombination rate in-
creased, despite having a large number of loci (Fig. 4D). The esti-
mated splitting time converged toward the true value (Fig. 4F). 
The standard errors of all parameter estimators showed a substan-
tial reduction with an increasing number of loci in the presence of 
recombination (Fig. 4).  

Discussion 

This study extends the investigation of Hey and Wang [6]. It con-
ducts a simulation-based investigation to examine the impact of 
recombination on estimating IM models using the MIST program. 

Table 1. Notations and simulation setting

Demographic parameters Scaled parameters Description True values
Ni θi = 4Niu Population sizes θ1 = θ2 = θ3 =10
t τ = tu Splitting time τ=0.5, 2.5, 10
M m= M/u Migration rates m1 =0, 0.1; m2 =0
r ρ = r/u Recombination rates ρ=0, 0.2, 1, 5
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Fig. 2. Simulation results illustrating the impact of recombination on population sizes, θ1 (A), θ2 (B), and θ3 (C), as a function of loci. Each 
plot compares the results in the absence of recombination (ρ = 0) with those from low to high recombination rates (ρ = 0.2, 1, 5) when m1 = 
m2 = 0 and θ1 = θ2 = θ3 = 10 (represented in a grey horizontal line in each plot). Columns show the results when different splitting times of 
τ = 0.5, 2.5, 10 were considered. Bars indicate standard errors, and the x-axis for the numbers of loci is on a log scale. Points with bars were 
horizontally scattered around the corresponding number of loci to minimize overlap.

In particular, we aimed to assess the consistency of the demo-
graphic parameter estimators by analyzing up to 1,000 loci and fo-
cus on errors arising from the uncertainty from the distribution of 
genealogies given an IM model. By assuming that recombination 
breakpoints are known and analyzing the true gene trees of loci 
randomly selected from blocks determined by the true recombina-
tion breakpoints, we isolated the effect of recombination only. 

This study examines the consistency of the estimators of the IM 
model parameters in the absence and presence of recombination. 
In the absence of recombination, the estimates of the six parame-
ters converged to their true values as the number of loci increased, 
and the standard errors decreased with the number of loci. How-
ever, in the presence of recombination, the estimates of the IM 
model parameters were more biased, with population sizes overes-
timated as the recombination rate increased. The estimate of the 
ancestral common population size was particularly more biased 
than the estimates of the other two population sizes. The non-zero 
migration rate was observed to be underestimated as the recombi-

nation rate increased. The splitting time appeared to approach the 
true value with an increasing number of loci in all cases. 

The present investigation yielded findings that are congruent 
with those of the previous research conducted by Hey and Wang 
[6], indicating that certain migration rates and population sizes are 
subject to bias when recombination is present. However, the cur-
rent study also revealed that the magnitude of such biases tended 
to increase with an increase in the number of loci. It is worth not-
ing that Hey and Wang [6] reported biases in the estimate of the 
splitting time using up to 50 loci. In contrast, the current study 
found that the estimation of the splitting time since divergence 
was consistent and accurate with a greater number of loci. 

Further investigations are required to understand the sources of 
errors when inferring IM models. In particular, it would be intrigu-
ing to assess the accumulated errors that arise from estimating re-
combination breakpoints from DNA alignments and inferring IM 
models from DNA alignment analyses, and to compare these re-
sults with those obtained in this study. A simulation study could 
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Fig. 3. Simulation results illustrating the impact of recombination on migration rates, m1 (A), m2 (B), and splitting time (C) when m1 = m2 = 
0 and θ1 = θ2 = θ3 = 10. Please refer to the Fig. 2 caption for the detailed labels.

Fig. 4. Simulation results illustrating the impact of recombination on isolation-with-migration model parameters. (A–F) The true parameter 
values of θ1 = θ2 = θ3 = 10, m1 = 0.1, m2 = 0 and τ = 10 are indicated by gray horizontal lines. Each plot compares the results in the absence 
of recombination (ρ = 0) with those from low to high recombination rates (ρ = 0.2, 1, 5). Bars indicate standard errors, and the x-axis for the 
numbers of loci is on a log scale. Points with bars were horizontally scattered around the corresponding number of loci to minimize overlap.
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provide insight into whether biases in population sizes and migra-
tion rates persist and whether the estimate of the splitting time re-
mains consistent. 

This study highlights the importance of considering the effect of 
recombination in IM model inference and avenues for improving 
the methodology. The identified biases in population sizes and 
migration rates serve as valuable information for developing cor-
rection methods or adjustment techniques that mitigate the bias 
introduced by recombination. Moreover, the study underscores 
the need for future models to explicitly incorporate recombination 
processes. By explicitly accounting for recombination in the mod-
eling framework, researchers can capture the complexities and nu-
ances of genome evolution more realistically. Furthermore, investi-
gating additional factors, such as the estimation of recombination 
breakpoints, and integrating them into the model can lead to a 
more comprehensive and realistic representation of evolutionary 
processes. By developing correction methods, explicitly incorpo-
rating recombination, and exploring additional factors, researchers 
can construct better genome evolution models that capture the 
complexities of real-world evolutionary processes. 
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