DOI QR코드

DOI QR Code

Texture analysis in cone-beam computed tomographic images of medication-related osteonecrosis of the jaw

  • Received : 2022.11.22
  • Accepted : 2023.01.14
  • Published : 2023.06.30

Abstract

Purpose: The aim of this study was to evaluate changes in the trabecular bone through texture analysis and compare the texture analysis characteristics of different areas in patients with medication-related osteonecrosis of the jaw (MRONJ). Materials and Methods: Cone-beam computed tomographic images of 16 patients diagnosed with MRONJ were used. In sagittal images, 3 regions were chosen: active osteonecrosis(AO); intermediate tissue (IT), which presented a zone of apparently healthy tissue adjacent to the AO area; and healthy bone tissue (HT) (control area). Texture analysis was performed evaluating 7 parameters: secondary angular momentum, contrast, correlation, sum of squares, inverse moment of difference, sum of entropies, and entropy. Data were analyzed using the Kruskal-Wallis test with a significance level of 5%. Results: Comparing the areas of AO, IT, and HT, significant differences (P<0.05) were observed. The IT and AO area images showed higher values for parameters such as contrast, entropy, and secondary angular momentum than the HT area, indicating greater disorder in these tissues. Conclusion: Through texture analysis, changes in the bone pattern could be observed in areas of osteonecrosis. The texture analysis demonstrated that areas visually identified and classified as IT still had necrotic tissue, thereby increasing the accuracy of delimiting the real extension of MRONJ.

Keywords

References

  1. Lorenzo-Pouso AI, Bagan J, Bagan L, Gandara-Vila P, Chamorro-Petronacci CM, Castelo-Baz P, et al. Medication-related osteonecrosis of the jaw: a critical narrative review. J Clin Med 2021; 10: 4367.
  2. Yarom N, Shapiro CL, Peterson DE, Van Poznak CH, Bohlke K, Ruggiero SL, et al. Medication-related osteonecrosis of the jaw: MASCC/ISOO/ASCO clinical practice guideline. J Clin Oncol 2019; 37: 2270-90. https://doi.org/10.1200/JCO.19.01186
  3. Alsalih A, Dam A, Lindberg P, Truedsson A. Medication-related osteonecrosis of the jaws initiated by zoledronic acid and potential pathophysiology. Dent J(Basel) 2021; 9: 85.
  4. Singh M, Gonegandla GS. Bisphosphonate-induced osteonecrosis of the jaws(BIONJ). J Maxillofac Oral Surg 2020; 19: 162-7. https://doi.org/10.1007/s12663-019-01211-2
  5. Eguia A, Bagan-Debon L, Cardona F. Review and update on drugs related to the development of osteonecrosis of the jaw. Med Oral Patol Oral Cir Bucal 2020; 25: e71-83. https://doi.org/10.4317/medoral.23191
  6. Kawahara M, Kuroshima S, Sawase T. Clinical considerations for medication-related osteonecrosis of the jaw: a comprehensive literature review. Int J Implant Dent 2021; 7: 47.
  7. Baba A, Goto TK, Ojiri H, Takagiwa M, Hiraga C, Okamura M, et al. CT imaging features of antiresorptive agent-related osteonecrosis of the jaw/medication-related osteonecrosis of the jaw. Dentomaxillofac Radiol 2018; 47: 20170323.
  8. Shin WJ, Kim CH. Prognostic factors for outcome of surgical treatment in medication-related osteonecrosis of the jaw. J Korean Assoc Oral Maxillofac Surg 2018; 44: 174-81.
  9. Pichardo SE, Broek FW, Fiocco M, Appelman-Dijkstra NM, van Merkesteyn JP. A comparison of the cone beam computed tomography findings in medication-related osteonecrosis of the jaws related to denosumab versus bisphosphonates: an observational pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129: 411-7. https://doi.org/10.1016/j.oooo.2019.09.010
  10. Kun-Darbois JD, Fauvel F. Medication-related osteonecrosis and osteoradionecrosis of the jaws: update and current management. Morphologie 2021; 105: 170-87. https://doi.org/10.1016/j.morpho.2020.11.008
  11. Huber FA, Schumann P, von Spiczak J, Wurnig MC, Klarhofer M, Finkenstaedt T, et al. Medication-related osteonecrosis of the jaw-comparison of bone imaging using ultrashort echo-time magnetic resonance imaging and cone-beam computed tomography. Invest Radiol 2020; 55: 160-7. https://doi.org/10.1097/RLI.0000000000000617
  12. Voigt H. The 'digital eye' at the threshold of cancer diagnosis. Expert Rev Anticancer Ther 2002; 2: 479-80. https://doi.org/10.1586/14737140.2.5.479
  13. Oliveira MS, Fernandes PT, Avelar WM, Santos SL, Castellano G, Li LM. Texture analysis of computed tomography images of acute ischemic stroke patients. Braz J Med Biol Res 2009; 42: 1076-9. https://doi.org/10.1590/S0100-879X2009005000034
  14. Szczypinski PM, Strzelecki M, Materka A, Klepaczko A. MaZda - a software package for image texture analysis. Comput Methods Programs Biomed 2009; 94: 66-76. https://doi.org/10.1016/j.cmpb.2008.08.005
  15. Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ. CT texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics 2017; 37: 1483-503. https://doi.org/10.1148/rg.2017170056
  16. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern 1973; 3: 610-21. https://doi.org/10.1109/TSMC.1973.4309314
  17. Hirvasniemi J, Gielis WP, Arbabi S, Agricola R, van Spil WE, Arbabi V, et al. Bone texture analysis for prediction of incident radiographic hip osteoarthritis using machine learning: data from the Cohort Hip and Cohort Knee (CHECK) study. Osteoarthritis Cartilage 2019; 27: 906-14. https://doi.org/10.1016/j.joca.2019.02.796
  18. Kavitha MS, An SY, An CH, Huh KH, Yi WJ, Heo MS, et al. Texture analysis of mandibular cortical bone on digital dental panoramic radiographs for the diagnosis of osteoporosis in Korean women. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 119: 346-56. https://doi.org/10.1016/j.oooo.2014.11.009
  19. Lee KM, Kim HG, Lee YH, Kim EJ. mDixon-based texture analysis of an intraosseous lipoma: a case report and current review for the dental clinician. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 125: e67-71. https://doi.org/10.1016/j.oooo.2017.10.013
  20. Goncalves BC, de Araujo EC, Nussi AD, Bechara N, Sarmento D, Oliveira MS, et al. Texture analysis of cone-beam computed tomography images assists the detection of furcal lesion. J Periodontol 2020; 91: 1159-66. https://doi.org/10.1002/JPER.19-0477
  21. Raja JV, Khan M, Ramachandra VK, Al-Kadi O. Texture analysis of CT images in the characterization of oral cancers involving buccal mucosa. Dentomaxillofac Radiol 2012; 41: 475-80. https://doi.org/10.1259/dmfr/83345935
  22. Marchand-Libouban H, Guillaume B, Bellaiche N, Chappard D. Texture analysis of computed tomographic images in osteoporotic patients with sinus lift bone graft reconstruction. Clin Oral Investig 2013; 17: 1267-72. https://doi.org/10.1007/s00784-012-0808-z
  23. Costa AL, de Souza Carreira B, Fardim KA, Nussi AD, da Silva Lima VC, Miguel MM, et al. Texture analysis of cone beam computed tomography images reveals dental implant stability. Int J Oral Maxillofac Surg 2021; 50: 1609-16. https://doi.org/10.1016/j.ijom.2021.04.009
  24. Kitagawa Y, Ohga N, Asaka T, Sato J, Hata H, Helman J, et al. Imaging modalities for drug-related osteonecrosis of the jaw (3), positron emission tomography imaging for the diagnosis of medication-related osteonecrosis of the jaw. Jpn Dent Sci Rev 2019; 55: 65-70. https://doi.org/10.1016/j.jdsr.2018.12.001
  25. Chappard D, Guggenbuhl P, Legrand E, Basle MF, Audran M. Texture analysis of X-ray radiographs is correlated with bone histomorphometry. J Bone Miner Metab 2005; 23: 24-9.  https://doi.org/10.1007/s00774-004-0536-9