DOI QR코드

DOI QR Code

A Comprehensive Review of Geological CO2 Sequestration in Basalt Formations

현무암 CO2 지중저장 해외 연구 사례 조사 및 타당성 분석

  • Hyunjeong Jeon (Department of Earth System Sciences, Yonsei University) ;
  • Hyung Chul Shin (Department of Earth System Sciences, Yonsei University) ;
  • Tae Kwon Yun (Department of Earth System Sciences, Yonsei University) ;
  • Weon Shik Han (Department of Earth System Sciences, Yonsei University) ;
  • Jaehoon Jeong (Global E&P Technology Center, Korea National Oil Corporation) ;
  • Jaehwii Gwag (Global E&P Technology Center, Korea National Oil Corporation)
  • 전현정 (연세대학교 지구시스템과학과) ;
  • 신형철 (연세대학교 지구시스템과학과) ;
  • 윤태권 (연세대학교 지구시스템과학과) ;
  • 한원식 (연세대학교 지구시스템과학과) ;
  • 정재훈 (한국석유공사 글로벌기술센터) ;
  • 곽재휘 (한국석유공사 글로벌기술센터)
  • Received : 2023.04.19
  • Accepted : 2023.06.15
  • Published : 2023.06.28

Abstract

Development of Carbon Capture and Storage (CCS) technique is becoming increasingly important as a method to mitigate the strengthening effects of global warming, generated from the unprecedented increase in released anthropogenic CO2. In the recent years, the characteristics of basaltic rocks (i.e., large volume, high reactivity and surplus of cation components) have been recognized to be potentially favorable in facilitation of CCS; based on this, research on utilization of basaltic formations for underground CO2 storage is currently ongoing in various fields. This study investigated the feasibility of underground storage of CO2 in basalt, based on the examination of the CO2 storage mechanisms in subsurface, assessment of basalt characteristics, and review of the global research on basaltic CO2 storage. The global research examined were classified into experimental/modeling/field demonstration, based on the methods utilized. Experimental conditions used in research demonstrated temperatures ranging from 20 to 250 ℃, pressure ranging from 0.1 to 30 MPa, and the rock-fluid reaction time ranging from several hours to four years. Modeling research on basalt involved construction of models similar to the potential storage sites, with examination of changes in fluid dynamics and geochemical factors before and after CO2-fluid injection. The investigation demonstrated that basalt has large potential for CO2 storage, along with capacity for rapid mineralization reactions; these factors lessens the environmental constraints (i.e., temperature, pressure, and geological structures) generally required for CO2 storage. The success of major field demonstration projects, the CarbFix project and the Wallula project, indicate that basalt is promising geological formation to facilitate CCS. However, usage of basalt as storage formation requires additional conditions which must be carefully considered - mineralization mechanism can vary significantly depending on factors such as the basalt composition and injection zone properties: for instance, precipitation of carbonate and silicate minerals can reduce the injectivity into the formation. In addition, there is a risk of polluting the subsurface environment due to the combination of pressure increase and induced rock-CO2-fluid reactions upon injection. As dissolution of CO2 into fluids is required prior to injection, monitoring techniques different from conventional methods are needed. Hence, in order to facilitate efficient and stable underground storage of CO2 in basalt, it is necessary to select a suitable storage formation, accumulate various database of the field, and conduct systematic research utilizing experiments/modeling/field studies to develop comprehensive understanding of the potential storage site.

CO2 배출량 증가로 인한 지구온난화 심화에 대한 주요 대책으로 CO2를 포집하여 지중에 저장하는 이산화탄소 포집·저장(Carbon capture storage, CCS) 기술이 주목받고 있다. 최근 현무암의 거대한 체적, 높은 반응성, 풍부한 양이온 함량 등의 특성이 CO2 포획 및 저장 기작에 유리하게 작용한다는 사실이 부각되면서, 현무암층을 대상으로 하는 CO2 지중저장이 다양한 분야에서 연구되고 있다. 본 연구에서는 CO2 지중저장 기작, 현무암의 특성과 더불어 국외 연구 사례들을 조사 및 분석하여, 현무암 CO2 지중저장에 대한 타당성을 검토하였다. 조사한 사례들은 수행 방법을 기준으로 실험, 모델링, 현장 실증 연구로 분류하였다. 연구 사례별 실험 조건의 경우 온도는 20 ~ 250 ℃, 압력은 0.1 ~ 30 MPa, 암석-유체 간 반응 시간은 수 시간에서 4년까지 넓은 범위에서 진행되었다. 모델링 연구에서는 현무암 CO2 지중저장 후보지와 유사한 모델을 구축하여 CO2-유체 주입 전∙후 유체역학적 및 지화학적 요인들에 대한 변화를 살펴본 사례가 다수였다. 검토 결과, 현무암은 잠재 CO2 저장용량이 크고, CO2 광물화 반응이 빠르기 때문에 현무암 CO2 지중저장시 온도와 압력 및 지질구조와 같은 환경적인 제약이 적다. 현장 실증 사례인 CarbFix project, Wallula project가 성공적으로 수행되어 실증 수행가능성 또한 높게 평가되고 있다. 그러나 현무암 대상 CO2 지중저장에서 신중히 고려해야 할 점도 존재한다. 광물화 기작이 현무암의 조성, 주입 지역의 특성 등 여러 요인에 따라 결과가 상이하게 나타나고, 탄산염과 규산염 광물 등의 침전으로 인해 관정 주입성(injectivity) 저하가 발생할 수 있다. CO2 주입 시 저장층 내 압력 증가가 발생할 수 있으며 암석-CO2-유체 반응 과정에서 지중환경 오염의 위험성도 존재한다. 유체에 CO2를 용해시켜 주입하기 때문에 기존 방식과 다른 지중 모니터링 기술 또한 요구된다. 따라서, 현무암에서의 CO2 지중저장을 안정적이고 효율적으로 수행하기 위해서는 적합한 대상 지역을 선별하고, 해당 지역에 대한 여러 자료를 구축하여 이를 기반으로 한 다양한 실험, 모델링, 현장 실증 등의 체계적인 연구 수행이 필요하다.

Keywords

Acknowledgement

본 연구는 2022년 한국석유공사 자체연구과제의 재원으로 한국석유공사의 지원을 받아 수행되었으며(No. 22-01), 산업통상자원부의 "에너지기술개발사업"(과제번호 20212010200010)의 지원을 받아 수행된 연구입니다.

References

  1. Adeoye, J.T. et al. (2017) Effect of transport limitations and fluid properties on reaction products in fractures of unaltered and serpentinized basalt exposed to high PCO2  fluids. International Journal of Greenhouse Gas Control, v.63, p.310-320. doi: 10.1016/j.ijggc.2017.06.003
  2. Alfredsson, H.A. et al. (2013) The geology and water chemistry of the Hellisheidi, SW-Iceland carbon storage site. International Journal of Greenhouse Gas Control, v.12, p.399-418. doi: 10.1016/j.ijggc.2012.11.019
  3. Aradottir, E.S., Sigurdardottir, H., Sigfusson, B. and Gunnlaugsson, E. (2011) CarbFix: a CCS pilot project imitating and accelerating natural CO2 sequestration. Greenhouse Gases: Science and Technology, v.1(2), p.105-118. doi: 10.1002/ghg.18
  4. Bachu, S. and Bennion, B. (2008) Effects of in-situ conditions on relative permeability characteristics of CO2-brine systems. Environmental Geology, v.54, p.1707-1722. doi: 10.1007/s00254-007-0946-9
  5. Brady, P.V. and Gislason, S.R. (1997) Seafloor weathering controls on atmospheric CO2 and global climate. Geochimica et Cosmochimica Acta, v.61(5), p.965-973. doi: 10.1016/S0016-7037(96)00385-7
  6. Callow, B., Falcon-Suarez, I., Ahmed, S. and Matter, J. (2018) Assessing the carbon sequestration potential of basalt using X-ray micro-CT and rock mechanics. International Journal of Greenhouse Gas Control, v.70, p.146-156. doi: 10.1016/j.ijggc.2017.12.008
  7. Chauhan, B.S., Mahajan, G., Randhawa, R.K., Singh, H. and Kang, M.S. (2014) Global warming and its possible impact on agriculture in India. Advances in agronomy, v.123, p.65-121. doi: 10.1016/B978-0-12-420225-2.00002-9
  8. Cilek, V. (2009) Earth System: History and Natural Variability-Volume I, 1. EOLSS Publications.
  9. Cinar, Y., Bukhteeva, O., Neal, P.R., Allinson, W.G. and Paterson, L. (2008) CO2 storage in low permeability formations, SPE Symposium on Improved Oil Recovery. OnePetro. doi: 10.2118/114028-MS
  10. Clark, D.E. et al. (2019) Experimental observations of CO2-water-basaltic glass interaction in a large column reactor experiment at 50℃. International Journal of Greenhouse Gas Control, v.89, p.9-19. doi: 10.1016/j.ijggc.2019.07.007
  11. Cox, K.G. (2013) The interpretation of igneous rocks. Springer Science & Business Media.
  12. De Silva, P.N.K. and Ranjith, P. (2012) A study of methodologies for CO2 storage capacity estimation of saline aquifers. Fuel, v.93, p.13-27. doi: 10.1016/j.fuel.2011.07.004
  13. Desmet, K. and Rossi-Hansberg, E. (2015) On the spatial economic impact of global warming. Journal of Urban Economics, v.88, p.16-37. doi: 10.1016/j.jue.2015.04.004
  14. Doughty, C. (2008) Estimating plume volume for geologic storage of CO2 in saline aquifers. 0017-467X, Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).
  15. Erol, S., Akin, T., Baser, A., Saracoglu, O. and Akin, S. (2022) Fluid-CO2 injection impact in a geothermal reservoir: Evaluation with 3-D reactive transport modeling. Geothermics, v.98, p.102271. doi: 10.1016/j.geothermics.2021.102271
  16. Esteves, A.F., Santos, F.M. and Pires, J.C.M. (2019) Carbon dioxide as geothermal working fluid: An overview. Renewable and Sustainable Energy Reviews, v.114, p.109331. doi: 10.1016/j.rser.2019.109331
  17. Farooqui, M. et al. (2009) Evaluating volcanic reservoirs. Oilfield Review, v.21(1), p.36-47.
  18. Galeczka, I.M. et al. (2022) A pre-injection assessment of CO2 and H2S mineralization reactions at the Nesjavellir (Iceland) geothermal storage site. International Journal of Greenhouse Gas Control, v.115, p.103610. doi: 10.1016/j.ijggc.2022.103610
  19. Giammar, D.E., Bruant Jr, R.G. and Peters, C.A. (2005) Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide. Chemical Geology, v.217(3-4), p.257-276. doi: 10.1016/j.chemgeo.2004.12.013
  20. Gill, R. and Fitton, G. (2022) Igneous rocks and processes: a practical guide. John Wiley & Sons.
  21. Gislason, S.R., Sigurdardottir, H., Aradottir, E.S. and Oelkers, E.H. (2018) A brief history of CarbFix: Challenges and victories of the project's pilot phase. Energy Procedia, v.146, p.103-114. doi: 10.1016/j.egypro.2018.07.014
  22. Goldberg, D. et al. (2018) Geological storage of CO2 in sub-seafloor basalt: the CarbonSAFE pre-feasibility study offshore Washington State and British Columbia. Energy Procedia, v.146, p.158-165. doi: 10.1016/j.egypro.2018.07.020
  23. Goldberg, D. and Slagle, A.L. (2009) A global assessment of deep-sea basalt sites for carbon sequestration. Energy Procedia, v.1(1), p.3675-3682. doi: 10.1016/j.egypro.2009.02.165
  24. Gysi, A.P. and Stefansson, A. (2012) CO2-water-basalt interaction. Low temperature experiments and implications for CO2 sequestration into basalts. Geochimica et Cosmochimica Acta, v.81, p.129-152. doi: 10.1016/j.gca.2011.12.012
  25. Handogo, R., Mualim, A., Sutikno, J.P. and Altway, A. (2022) Evaluation of CO2 transport design via pipeline in the CCS system with various distance combinations. ECS Transactions, v.107(1), p.8593. doi: 10.1149/10701.8593ecst
  26. Hellevang, H., Haile, B.G. and Tetteh, A. (2017) Experimental study to better understand factors affecting the CO2 mineral trapping potential of basalt. Greenhouse Gases: Science and Technology, v.7(1), p.143-157. doi: 10.1002/ghg.1619
  27. Hellevang, H., Wolff-Boenisch, D. and Nooraiepour, M. (2019) Kinetic control on the distribution of secondary precipitates during CO2-basalt interactions. E3S Web of Conferences. doi: 10.1051/e3sconf/20199804006
  28. Hong, G.-H., Park, C.-H. and Kim, H.-J. (2005) CO2 Sequestration in Geological Structures in the Maritime Area: A Preliminary Review. Journal of the Korean Society for Marine Environment & Energy, v.8(4), p.203-212.
  29. Houghton, J. (2005) Global warming. Reports on progress in physics, v.68(6), p.1343.
  30. Ji, Y., Madhav, D. and Vandeginste, V. (2022) Kinetics of enhanced magnesium carbonate formation for CO2 storage via mineralization at 200℃. International Journal of Greenhouse Gas Control, v.121, p.103777. doi: 10.1016/j.ijggc.2022.103777
  31. Kanakiya, S., Adam, L., Esteban, L., Rowe, M.C. and Shane, P. (2017) Dissolution and secondary mineral precipitation in basalts due to reactions with carbonic acid. Journal of Geophysical Research: Solid Earth, v.122(6), p.4312-4327. doi: 10.1002/2017JB014019
  32. Kelemen, P., Benson, S.M., Pilorge, H., Psarras, P. and Wilcox, J. (2019) An overview of the status and challenges of CO2 storage in minerals and geological formations. Frontiers in Climate, v.1, p.9. doi: 10.3389/fclim.2019.00009
  33. Keskin, T., Nalakath Abubackar, H., Arslan, K. and Azbar, N. (2019) Chapter 12 - Biohydrogen Production From Solid Wastes. In: Pandey, A., Mohan, S.V., Chang, J.-S., Hallenbeck, P.C., Larroche, C. (Eds.), Biohydrogen (Second Edition). Elsevier, pp. 321-346. DOI:https://doi.org/10.1016/B978-0-444-64203-5.00012-5
  34. Kim, K., Ahn, J., Lee, Y. and Choi, J. (2021) CCUS Deep Investment Analysis Report, Korea Institute of Energy Research.
  35. Kneafsey, T.J. and Pruess, K. (2010) Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection. Transport in porous media, v.82(1), p.123-139. doi: 10.1007/s11242-009-9482-2
  36. Krevor, S.C., Pini, R., Li, B. and Benson, S.M. (2011) Capillary heterogeneity trapping of CO2 in a sandstone rock at reservoir conditions. Geophysical Research Letters, v.38(15). doi: 10.1029/2011GL048239
  37. Kumar, A., Shrivastava, J. and Pathak, V. (2017) Mineral carbonation reactions under water-saturated, hydrothermal-like conditions and numerical simulations of CO2 sequestration in tholeiitic basalt of the Eastern Deccan Volcanic Province, India. Applied Geochemistry, v.84, p.87-104. doi: 10.1016/j.apgeochem.2017.05.021
  38. Li, S., Wang, P., Wang, Z., Cheng, H. and Zhang, K. (2023) Strategy to enhance geological CO2 storage capacity in saline aquifer. Geophysical Research Letters, v.50(3), p.e2022GL101431. doi: 10.1029/2022GL101431
  39. Liu, D., Agarwal, R., Li, Y. and Yang, S. (2019) Reactive transport modeling of mineral carbonation in unaltered and altered basalts during CO2 sequestration. International Journal of Greenhouse Gas Control, v.85, p.109-120. doi: 10.1016/j.ijggc.2019.04.006
  40. Liu, D., Agarwal, R., Liu, F., Yang, S. and Li, Y. (2022) Modeling and assessment of CO2 geological storage in the Eastern Deccan Basalt of India. Environmental Science and Pollution Research, v.29(56), p.85465-85481. doi: 10.1007/s11356-022-21757-y
  41. Liu, H., Consoli, C. and Zapantis, A. (2018) Overview of Carbon Capture and Storage (CCS) facilities globally. 14th Greenhouse Gas Control Technologies Conference Melbourne 21-26 October 2018 (GHGT-14).
  42. Marieni, C., Henstock, T.J. and Teagle, D.A. (2013) Geological storage of CO2 within the oceanic crust by gravitational trapping. Geophysical Research Letters, v.40(23), p.6219-6224. doi: 10.1002/2013GL058220
  43. Marieni, C., Matter, J.M. and Teagle, D.A. (2020) Experimental study on mafic rock dissolution rates within CO2-seawater-rock systems. Geochimica et Cosmochimica Acta, v.272, p.259-275. doi: 10.1016/j.gca.2020.01.004
  44. Marieni, C., Voigt, M., Clark, D.E., Gislason, S.R. and Oelkers, E.H. (2021) Mineralization potential of water-dissolved CO2 and H2S injected into basalts as function of temperature: Freshwater versus Seawater. International Journal of Greenhouse Gas Control, v.109, p.103357. doi: 10.1016/j.ijggc.2021.103357
  45. Matter, J.M. et al. (2011) The CarbFix Pilot Project-storing carbon dioxide in basalt. Energy Procedia, v.4, p.5579-5585. doi: 10.1016/j.egypro.2011.02.546
  46. Matter, J.M. et al. (2016) Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 352(6291), p.1312-1314. doi: 10.1126/science.aad8132
  47. McGrail, B.P., Ho, A.M., Reidel, S.P. and Schaef, H.T. (2003) Use and features of basalt formations for geologic sequestration. Greenhouse Gas Control Technologies-6th International Conference. Elsevier, pp. 1637-1640. doi: 10.1016/B978-008044276-1/50264-6
  48. McGrail, B.P., Schaef, H.T., Glezakou, V.-A., Dang, L.X. and Owen, A.T. (2009) Water reactivity in the liquid and supercritical CO2 phase: Has half the story been neglected? Energy Procedia, v.1(1), p.3415-3419. doi: 10.1016/j.egypro.2009.02.131
  49. McGrail, B.P., Spane, F.A., Amonette, J.E., Thompson, C. and Brown, C.F. (2014) Injection and monitoring at the Wallula basalt pilot project. Energy Procedia, v.63, p.2939-2948. doi: 10.1016/j.egypro.2014.11.316
  50. Menefee, A.H., Li, P., Giammar, D.E. and Ellis, B.R. (2017) Roles of transport limitations and mineral heterogeneity in carbonation of fractured basalts. Environmental Science & Technology, v.51(16), p.9352-9362. doi: 10.1021/acs.est.7b00326
  51. Moune, S., Gauthier, P.-J., Gislason, S.R. and Sigmarsson, O. (2006) Trace element degassing and enrichment in the eruptive plume of the 2000 eruption of Hekla volcano, Iceland. Geochimica et Cosmochimica Acta, v.70(2), p.461-479. doi: 10.1016/j.gca.2005.09.011
  52. Nakajima, T., Xue, Z., Chiyonobu, S. and Azuma, H. (2014) Numerical simulation of CO2 leakage along fault system for the assessment of environmental impacts at CCS site. Energy Procedia, v.63, p.3234-3241. doi: 10.1016/j.egypro.2014.11.350
  53. Nalley, S. and LaRose, A. (2021) International Energy Outlook 2021 (IEO2021). Energy Information Administration (EIA) Washington, DC, USA.
  54. Page, B. et al. (2020) The Global Status of CCS 2020: Vital to Achieve Net Zero.
  55. Phukan, M., Vu, H.P. and Haese, R.R. (2021) Mineral dissolution and precipitation reactions and their net balance controlled by mineral surface area: an experimental study on the interactions between continental flood basalts and CO2-saturated water at 80 bars and 60℃. Chemical Geology, v.559, p.119909. doi: 10.1016/j.chemgeo.2020.119909
  56. Portner, H.-O. et al. (2022) Climate change 2022: Impacts, adaptation and vulnerability. IPCC Sixth Assessment Report: 37-118.
  57. Rassool, D., Consoli, C., Townsend, A. and Liu, H. (2020) Overview of Organisations and Policies Supporting the Deployment of Large-Scale CCS Facilities. Global CCS Institute: Washington, DC, USA.
  58. Ratouis, T.M. et al. (2022) Carbfix 2: A transport model of longterm CO2 and H2S injection into basaltic rocks at Hellisheidi, SW-Iceland. International Journal of Greenhouse Gas Control, v.114, p.103586. doi: 10.1016/j.ijggc.2022.103586
  59. Raza, A., Glatz, G., Gholami, R., Mahmoud, M. and Alafnan, S. (2022) Carbon mineralization and geological storage of CO2 in basalt: Mechanisms and technical challenges. Earth-Science Reviews, v.229, p.104036. doi: 10.1016/j.earscirev.2022.104036
  60. Rosenbauer, R.J., Thomas, B., Bischoff, J.L. and Palandri, J. (2012) Carbon sequestration via reaction with basaltic rocks: Geochemical modeling and experimental results. Geochimica et Cosmochimica Acta, v.89, p.116-133. doi: 10.1016/j.gca.2012.04.042
  61. Sandalow, D. et al. (2021) Carbon Mineralization Roadmap Draft October 2021. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States).
  62. Schaef, H.T., McGrail, B.P. and Owen, A.T. (2009) Basalt-CO2-H2O interactions and variability in carbonate mineralization rates. Energy Procedia, v.1(1), p.4899-4906. doi: 10.1016/j.egypro.2009.02.320
  63. Schaef, H.T., McGrail, B.P. and Owen, A.T. (2010) Carbonate mineralization of volcanic province basalts. International Journal of Greenhouse Gas Control, v.4(2), p.249-261. doi: 10.1016/j.ijggc.2009.10.009
  64. Schaef, H.T., McGrail, B.P. and Owen, A.T. (2011) Basalt reactivity variability with reservoir depth in supercritical CO2 and aqueous phases. Energy Procedia, v.4, p.4977-4984. doi: 10.1016/j.egypro.2011.02.468
  65. Seevam, P.N., Race, J.M., Downie, M.J. and Hopkins, P. (2008) Transporting the next generation of CO2 for carbon, capture and storage: the impact of impurities on supercritical CO2 pipelines. International Pipeline Conference, pp. 39-51. doi: 10.1115/IPC2008-64063
  66. Siddik, M., Islam, M., Zaman, A. and Hasan, M. (2021) Current status and correlation of fossil fuels consumption and greenhouse gas emissions. Int. J. Energy Environ. Econ, v.28, p.103-119.
  67. Smith, R., Inomata, H. and Peters, C. (2013) Chapter 2 - Systems, Devices and Processes. In: Smith, R., Inomata, H., Peters, C. (Eds.), Supercritical Fluid Science and Technology. Elsevier, pp. 55-119. DOI:https://doi.org/10.1016/B978-0-444-52215-3.00002-7
  68. Snaebjornsdottir, S.O., Gislason, S.R., Galeczka, I.M. and Oelkers, E.H. (2018) Reaction path modelling of in-situ mineralisation of CO2 at the CarbFix site at Hellisheidi, SW-Iceland. Geochimica et Cosmochimica Acta, v.220, p.348-366. doi: 10.1016/j.gca.2017.09.053
  69. Snaebjornsdottir, S.O. et al. (2017) The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland. International Journal of Greenhouse Gas Control, v.58, p.87-102. DOI:https://doi.org/10.1016/j.ijggc.2017.01.007
  70. Snaebjornsdottir, S.O. et al. (2020) Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment, v.1(2), p.90-102. doi: 10.1038/s43017-019-0011-8
  71. Stockmann, G., Wolff-Boenisch, D., Gislason, S. and Oelkers, E. (2008) Dissolution of diopside and basaltic glass: the effect of carbonate coating. Mineralogical Magazine, v.72(1), p.135-139. doi: 10.1180/minmag.2008.072.1.135
  72. Takaya, Y., Nakamura, K. and Kato, Y. (2013a) Geological, geochemical and social-scientific assessment of basaltic aquifers as potential storage sites for CO2. Geochemical Journal, v.47(4), p.385-396. https://doi.org/10.2343/geochemj.2.0255
  73. Takaya, Y., Nakamura, K. and Kato, Y. (2013b) Geological, geochemical and social-scientific assessment of basaltic aquifers as potential storage sites for CO2. Geochemical Journal, v.47(4), p.385-396. DOI:10.2343/geochemj.2.0255
  74. Takaya, Y., Nakamura, K. and Kato, Y. (2015) Dissolution of altered tuffaceous rocks under conditions relevant for CO2 storage. Applied Geochemistry, v.58, p.78-87. doi: 10.1016/j.apgeochem.2015.03.012
  75. Torp, T.A. and Gale, J. (2004) Demonstrating storage of CO2 in geological reservoirs: The Sleipner and SACS projects. Energy, v.29(9-10), p.1361-1369. doi: 10.1016/j.energy.2004.03.104
  76. Utomo, G.P. and Gulec, N. (2021) Preliminary geochemical investigation of a possible CO2 injection in the Ungaran geothermal field, Indonesia: equilibrium and kinetic modeling. Greenhouse Gases: Science and Technology, v.11(1), p.3-18. doi: 10.1002/ghg.2037
  77. Van Pham, T.H., Aagaard, P. and Hellevang, H. (2012) On the potential for CO2 mineral storage in continental flood basalts-PHREEQC batch- and 1D diffusion-reaction simulations. Geochemical Transactions, v.13(1), p.1-12. doi: 10.1186/1467-4866-13-5
  78. Voigt, M. et al. (2021) An experimental study of basalt-seawater-CO2 interaction at 130℃. Geochimica et Cosmochimica Acta, v.308, p.21-41. doi: 10.1016/j.gca.2021.05.056
  79. White, C.M., Strazisar, B.R., Granite, E.J., Hoffman, J.S. and Pennline, H.W. (2003) Separation and capture of CO2 from large stationary sources and sequestration in geological formations-coalbeds and deep saline aquifers. Journal of the Air & Waste Management Association, v.53(6), p.645-715. doi: 10.1080/10473289.2003.10466206 
  80. White, S.K. et al. (2020) Quantification of CO2 mineralization at the Wallula basalt pilot project. Environmental Science & Technology, v.54(22), p.14609-14616. doi: 10.1021/acs.est.0c05142
  81. WMO (2022) 50: 50 Chance of Global Temperature Temporarily Reaching 1.5 C Threshold in Next Five Years.
  82. Wolff-Boenisch, D., Wenau, S., Gislason, S.R. and Oelkers, E.H. (2011) Dissolution of basalts and peridotite in seawater, in the presence of ligands, and CO2: Implications for mineral sequestration of carbon dioxide. Geochimica et Cosmochimica Acta, v.75(19), p.5510-5525. doi: 10.1016/j.gca.2011.07.004
  83. Wu, H., Jayne, R.S., Bodnar, R.J. and Pollyea, R.M. (2021) Simulation of CO2 mineral trapping and permeability alteration in fractured basalt: Implications for geologic carbon sequestration in mafic reservoirs. International Journal of Greenhouse Gas Control, v.109, p.103383. doi: 10.1016/j.ijggc.2021.103383
  84. Xiong, W. et al. (2018) CO2 mineral sequestration in naturally porous basalt. Environmental Science & Technology Letters, v.5(3), p.142-147. doi: 10.1021/acs.estlett.8b00047
  85. Xiong, W. et al. (2017) CO2 mineral trapping in fractured basalt. International Journal of Greenhouse Gas Control, 66: 204-217. DOI:https://doi.org/10.1016/j.ijggc.2017.10.003
  86. Zhang, D. and Song, J. (2014) Mechanisms for geological carbon sequestration. Procedia IUTAm, v.10, p.319-327. doi: 10.1016/j.piutam.2014.01.027
  87. 윤영기, 양정화, 최윤석, 이제훈, 이상은 (2021) 2050 Carbon Neutrality Scenarios. In: Secretariat, P.C.o.C.N.a.G.G. (Ed.).