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In the era of the 4th Industrial Revolution, Logistic 4.0 using data-based technologies such as IoT, Bigdata, and Al is a keystone
to logistics intelligence. In particular, the Al technology such as prognostics and health management for the maintenance of
logistics facilities is being in the spotlight. In order to ensure the reliability of the facilities, Time-Based Maintenance (TBM)
can be performed in every certain period of time, but this causes excessive maintenance costs and has limitations in preventing
sudden failures and accidents. On the other hand, the predictive maintenance using Al fault diagnosis model can do not only
overcome the limitation of TBM by automatically detecting abnormalities in logistics facilities, but also offer more advantages
by predicting future failures and allowing proactive measures to ensure stable and reliable system management. In order to train
and predict with Al machine learning model, data needs to be collected, processed, and analyzed. In this study, we have develop
a system that utilizes an Al detection model that can detect abnormalities of logistics rotational equipment and diagnose their
fault types. In the discussion, we will explain the entire experimental processes : experimental design, data collection procedure,
signal processing methods, feature analysis methods, and the model development.
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1. Introduction

Recently, digital transformation is underway due to logistics
intelligence as Logistic 4.0 using data-based technologies such
as [oT, Bigdata, and Al is accelerating. These core technologies
of the 4th Industrial Revolution have become major industries
throughout the operation and maintenance of logistics facilities
due to their economic advantages [3].

With the recent activation of non-contact work due to
changes in the social environment such as COVID-19, logistics
centers are also being automated and unmanned. Therefore,
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the use of Logistics 4.0 such as robotics, digital twin, [oT,
and Al is being carried out in various forms. In particular,
computational intelligence, or Al technology, is being at-
tempted to optimize and maintain the logistics operations of
automation facilities such as parcel sorter, transport facilities,
and logistics warehouses.

However, despite the intensive growth of logistics in-
telligence, facility maintenance faces many difficulties.
Logistics facilities are frequently disrupted by poor operating
conditions such as high loads, and damages to their major
parts are likely to cause major accidents such as the suspension
of the entire logistics center. For instance, recently there was
a suspension of Daejeon Hub Terminal, which accounts for
one-third of total delivery volume of a South Korean logistics
company that accounts for about half of the domestic delivery
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volume. Then it caused delays in services and expensive costs
to redistribute the holds, which were about 1.5 millions, to
other terminals [5].

The main components of most logistics automation facilities
are rotating mechanical components such as motors and
bearings. The machines are typical cases of early detection
as they always have potential elements of danger and large
accidents.

In order to ensure the reliability of the facilities, Time-Based
Maintenance (TBM) can be performed in every certain period
of time, but this causes excessive maintenance costs and has
limitations in preventing sudden failures and accidents.

Unlike TBM, the predictive maintenance using Al fault
diagnosis model can automatically detect abnormalities in lo-
gistics facilities, predict future failures, and take proactive
measures, so it can ensure stable and reliable system manage-
ment at low maintenance costs. A Research has found that
the predictive maintenance of mechanical facilities can reduce
unexpected downtime losses by up to 20% and minimize
maintenance costs by up to 10% [1].

The predictive maintenance market is expected to grow
from 4 billion dollars in 2020 to 13 billion dollars by 2025.
In particular, the delivery and logistics industry is expected
to grow from 548 million dollars in 2020 to 1.7 billion dollars
by 2025, and Al-based predictive maintenance technology
is expected to be an core technology in the logistics industry
in the future [4].

In this study, we created a fault diagnosis system for a
rotating machine of a logistics center. Specifically, we collected
normal and abnormal state of machines for training Al models,
and we were able to detect failures of motor components
such as bearing, rotor, and stator. In the rest of paper, I will
explain how we design Al models, collect data, transform
data, and train Al algorithms.

2. Model Design
2.1 Design of Fault Monitoring System

The facility diagnosis model in the fault monitoring system
is for detecting abnormal signals from acquired sensor data
and diagnosing which type of faults has occurred to the
machine. The model becomes the main algorithm for the mon-
itoring system, which collects vibration and current sensor
data, processes them in order to diagnose any fault issue,

and displays a current state of the machine. The whole system
design is shown in <Figure 1>. In this paper, we are going
to focus on the Al model using vibration data as emphasized
with a red-dotted line in the figure.

near real-time
data acquisition
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<Figure 1> Fault Diagnosis Monitoring System

2.2 Design of Al Fault Diagnosis Model

The algorithm of the fault diagnosis model is divided to
two parts : anomaly detection and fault type diagnosis. The
procedure of the AI fault diagnosis model is illustrated in

<Figure 2> and is briefly defined as the followings.

| Motor Fault Diagnosis Model Design |

Local DB
Preprocessing
S Dat: oS ]
(e\r/lisl;) rcue;)a (Denosing, Main DB
> Feature Ext.) (Datamart)
Which
component of Y =
the motor is [ F: gult Type | Anomgly %
) Diagnosis Detection o
having a =
problem? lN %
(Rotor, Stator,
Bearing) Normal

<Figure 2> Motor Fault Diagnosis Model Design

* A data acquisition device collects a sensor data in re-
al-time. This type of data is called time-waveform data,
or raw data.

* We remove noise from the raw data by using a denoising
method, and then calculate mathematically significant
factors, so called feature parameters. These factors are
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used for the anomaly detection. For fault type diagnosis,
we convert the domain of the time-waveform data to
the frequency domain and find the signature frequency
for each fault types.

* The feature parameters are saved in a database and diag-
nosed by the anomaly detection. If the data is detected
as an abnormal data, then it is further diagnosed to see
which fault type it is.

* After the model diagnoses the condition of the machine,
the data is defined as its condition and saved in the
database.

3. Data Preparation and Transformation
3.1 Data Acquisition

We collected sensor data from an rotor kit, which is a
motor-drive experimental setup as illustrated in <Figure 3>.
An industrial conveyor belt is powered by a motor, which
means that if we can predict a motor failure, we can prevent
the malfunction of a conveyor belt. Therefore, we created
the rotor kit in order to collect motor data and find fault
signatures for the Al model.

<Figure 3> Rotor Kit

In order to collect different types of fault, we prepared
intentionally damaged motors. The specification of the motor
used in the rotor kit are 1.5kW power supply and four poles.
Although the motor is smaller than general motors for industrial
conveyor belts, but we chose to use the size of a motor because
of its price competitiveness. We damaged components inside
the motor to create intentional failure of the motor, and since
we were able to control the experiment, we labeled which
part of the motor is broken. All fault labels and the number
of data samples are listed in <Table 1>.
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<Table 1> Fault Labels and Data Acquisition Amount

Component Fault Type Time (sec)
Normal Bearing 1200
Cracked Outer Race 300
Bearing Cracked Inner Race 300
Cracked Ball 300
Cracked Cage 300
Normal Rotor 600
Rotor Broken Rotor Bar 300
Eccentricity 300
Normal Stator 600
Stator Shorted Coil 300
Single Phase 300

The data we achieved from the sensor is vibration data,
measured in acceleration. The vibration is is a sinusoidal wave-
form and is collected 16,384 samples per a second. The <Figure
4> illustrates the normal and abnormal vibration data we col-
lected for the experiment.
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<Figure 4> Normal and Abnormal Vibration Waveform
3.2 Noise Filtering

In order to analyze the vibration data more precisely, we
need to remove noises from the sensor data. There are several
noise removing methods such as autoregressive filtering, wave-
let decomposition, etc. When removing noises from vibration
signals, people often use the autoregressive filtering model,
or so-called the AR model.

The AR model is a model that predicts a current state
by summing up the past states regressively, <Equation 1>.

P
yt:Ewiyt—iJrat (1

i=1

Since a discrete noise of the vibration is considered predict-
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able due to its repetitive behavior, we can predict the noise
using the AR model [9]. We can remove the noise from
the original vibration in order to yield the denoised vibration
signal as shown in <Equation 2>.

e(n)=xz(n)—z,(n), 2)

where e(n) is the clean vibration, z(n) is the original, and
z,(n) is the discrete noise.

The discrete noise is obtained by <Equation 3>.
2, (1) = Ya(e(n ), ()

where n and k are time indexes, p is the order of the model,
and a(k) are regressive parameters.

After we applied the noise filtering method to the bearing
data, we achieved a denoised fault data. The illustration in
<Figure 5> describes the comparison between the original
faulty signal and the denoised signal.
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<Figure 5> The Comparison Between the Signals
3.3 Feature Extraction for Anomaly Detection

The anomaly detection model needs to discriminate abnor-
mality from time waveform data; therefore, we need to train
the model with representative and summarized values, which
is also called feature parameters. Feature parameters are inputs
for training machine learning algorithms, and they are important
factors to achieve high precision. We used three statistical
indexes as feature parameters to demonstrate uniqueness of
the vibration waveform: root mean squared, crest factor, and
skewness. The equations for the indexes are shown in <Table
2>,

{Table 2> Time Waveform Feature Parameters

Formula

max (|z|)

Statistical Indexes
Peak

Standard Deviation

Root Mean Square

Crest Factor

Skewness

The root mean square and crest factor are key factors to
represent time waveform [2]. Those factors are illustrated
in <Figure 6>.
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<Figure 6> Peak and RMS of Time Waveform

Amplitude

In addition to the two factors, skewness, which describes
how sharp the peak is, can also show the uniqueness of vibration
signals. Unlike the moderate normal vibration, the faulty vi-
bration tends to have spikes as shown in <Figure 4>.

3.4 Feature Extraction for Fault Diagnosis

While statistically analyzing time waveform was enough
for anomaly detection, we need to transform the time waveform
data to a different type of waveform in order to find what
type of fault the machine has. Each fault type has its specific
frequency. That is, although they are rotating at the same
time, a cracked rotor has different rotational occurrence to
a cracked bearing because their sizes are different. Therefore,
if we find the signature frequencies of each fault type, we
can identify the corresponding failed components.

Therefore, we need to transform the time waveform data
to the frequency waveform data. The most popular method
is the Fourier Transform. We used a faster algorithm of the
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method to transform the time waveform data to the frequency
data. The <Figure 7 A-C> illustrate the frequency data of
a bearing, a rotor and a stator while they are abnormal [§].

FFT Graph for X.Axis

<Figure 7A> Vibration of a Bearing in the Frequency Domain
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<Figure 7B> Vibration of a Rotor in the Frequency Domain
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<Figure 7C> Vibration of a Stator in the Frequency Domain

To analyze the frequency data, we need to find the signature
frequencies of the faults. These frequencies are defined as
<Table 3>[2].

<{Table 3> Vibration Signature Analysis for Motor Components
Component Fault Type Frequency Equation
Cracked Inner Race| BPFI= %5 (1 + gg cos H)
' Cracked Outer Race| BPFO= %S(l — %cosﬂ)
Bearing 7 B2
. LY @ _ | PY 2)2
Cracked Ball | BSF= 1Bd5{1 (2] (com}
Cracked Cage FTF= g(l — %cosﬁ)
Broken Rotor Bar fo=Ffi(1£2ks)
Rotor —
Eccentricity fo=fi(1£2ks)
Shorted Coil n
Stator - f_T:fl{f(lfs)J_rk}
Single Phase P
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Using the frequency equations, we can find the signature
frequencies from <Figure 7A-C>. The <Figure 8A-C> show

the signature frequencies of each components.
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<Figure 8A> Bearing - Outer Race Fault Frequency

FFT Graph for X-Axis

<Figure 8B> Rotor - Eccentricity Fault Frequency

FFT Graph for X-Axis

<Figure 8C> Stator - Shorted Coil Fault Frequency

As illustrated in <Figure 8A-C>, although the signature
frequencies are not dominant, they are definitely depicted
in the waveform. We record the magnitudes of the frequencies
and use them as feature paramters for the fault type detection
model.

4. Training Model
4.1 Training Dataset for Anomaly Detection Model

We calculated RMS, crest factor, and skewness from the
time waveform vibration data and created a training dataset.
Since we collected each 2,400 seconds of normal and abnormal
data, we can create a dataset of 4,800 records of RMS, crest
factor, and skewness. The dataset is divided into the training
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dataset and testing dataset, respectively 7 to 3 ratio. The dataset

for normal and abnormal data is shown in <Figure 9A-B>.

CH7_Crest CH7_CrestFacor CH7_Skewness label

5.754406 0.415837 0.091572 0
6.450798 1.034777 0.055527 0
6.589952 0.710642 -0.005935 0
6.312672 0.659559 -0.032709 0
6.239767 0.631133 0.149524 0
4657441 0.314608 -0.033291 0

<Figure 9A> Normal Training Dataset

CH7_Crest CH7_CrestFacor CH7_Skewness label

5772951 0.198278 -0.171975 1
4557206 0.146160 -0.087673 1
5.194391 0.426468 -0.214161 1
6.157375 0.267198 -0.171244 1
4767501 -0.017362 -0.138365 1
5573474 0.270440 -0.306070 1

<Figure 9B> Abnormal Training Dataset

As illustrated in <Figure 9>, the normal data is labeled
0, and the abnormal data is labeled 1. Since there are only
two types of data, we used a binary classification algorithm.

4.2 Anomaly Detection Model Algorithm

There are many binary classificiation methods such as the
Decision Tree, the SVM, etc. In order to find the algorithm
that has highest accuracy for the data, we used the AutoML
library, so-called Pycaret. The library automatically validates
the training dataset to all algorithms that it allows and evaluates
the prediction score.

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT({Sec)

qda  Quadratic Discriminant Analysis 0.9143 09469 09762 0.8733 09205 0.8286 0.8377  0.0130

et Exira Trees Classifier 0.9071 09460 0.9286 0.8946 0.9090 0.8143 0.8193  0.0660

gbc Gradient Boosting Classifier 0.904¢ 09398 09286 0.6903 0.9077 0.8095 0.8128  0.0230

" Random Forest Classifier 09024 09385 09333 08826 09058 0.8048 08091  0.0750

Knn K Neighbors Classifier 09000 09365 09476 08687 09053 08000 08057  0.0230

nb Naive Bayes 09000 09254 09619 08616 09071 08000 08101 00130
xgboost Extreme Gradient Boosting 08881 09324 08952 08881 08891 07762 07806  0.0250

lightgbm  Light Gradient Boosting Machine 0.8857 09424 08952 08837 08872 0.7714 07754 0.0170

ada Ada Boost Classifier 0.8762 09282 0.8905 08710 08779 07524 07574  0.0230

dt Decision Tree Classifier 0.8429 0.8429 08190 08639 08373 0.6857 06922  0.0130

Ir Logistic Regression 07167 0.7102 07619 06936 07261 04333 04400 0.0150

ridge Ridge Classifier 07048 0.0000 07476 06897 07152 04085 04146  0.0110
Ida Linear Discriminant Analysis 07024 0.7082 07429 06880 07120 04048 04098  0.0130
svm SVM - Linear Kernel 0.6643 0.0000 07429 05657 05368 03286 03679  0.0120
dummy Dummy Classifier 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0120

<Figure 10> Anomaly Detection Training Result

We used 10-fold cross validation method to train the anomaly
detection dataset. The cross validation method is for normaliz-
ing the prediction result after the model is trained. The <Figure
10> shows the prediction score for the anomaly detection.

The validation result shows that quadratic discriminant anal-
ysis predicts the most accurately with 91.4%. This is a result
for self-testing with the training dataset; therefore, the model
can perform less when it is evaluated with the testing dataset.

4.3 Training Dataset for Fault Diagnosis Model

For the fault type diagnosis model, we collected the signature
frequencies and labeled each record with its fault type. The
size of the dataset is 4,800 with normal state motor. Although
it is a fault type detection model, we trained normal state
in order to distinguish normal and fault states. The normal
state is labeled as Motor. The <Figure 11> illustrates the

dataset for fault type detection model.

BPFI BPFO BSF FTF BRB ECC sC sp label
0017968 0023670 10 0041908 0062258 0032452 0069380 0358434 coil
0.012280 0.01633% 1.0 0.020744 0.872466 0.013841 0171178 0207671 motor

0067897 0075890 10 0065429 0104157 0119157 0437410 0625624 singlephase

0.093681 0.126608 1.0 0.143990 0237446 0.064590 0.182293 0.179002 rotorbar
0019210 0035002 1.0 0027380 0459911 0030543 0093203 0476183 inner
0.017722 0.044248 1.0 0.047238 0533660 0.023209 0.036539 0.393780 inner
0033300 0023960 10 0033102 0447958 0021154 0093785 0474027 inner
0.018708 0.055435 1.0 0.010606 0.208050 0.011219 0.095066 0.143962 cage
0012274 0022461 10 0015319 0832473 0016852 0215226 0213175 motor
0009784 0023920 10 0015572 0821981 0014259 0175398 0213827 motor

<Figure 11> Fault Diagnosis Model Dataset

The dataset for the fault type detection model is also divided,
respectively 7 to 3 ratio.

4.4 Fault Diagnosis Model Algorithm

To effectively train the dataset for the model, we used
four famous classification models, which are Extra Trees,
Extreme Gradient Boost, Random Forest, and Catboost, with
two classic models, Decision Tree and SVM [6]. The validation
result is shown in <Figure 12>.

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (Sec)

rf Random Forest Classifier 09232 009986 09338 0.9842 009833 09797 09201 0.8720

et Exira Trees Classifier 09836 09986 09336 09850 09836 09795 09799 02380
catboost CaiBoost Classifier 09725 09995 09725 0.9759 0.9719 09656 09667  3.4480
xgboost Extreme Gradient Boosting 0.9509 0.9989 09509 0.9608 09509 09386 09412 0.2300
dt Decision Tree Classifier 09398 09622 09398 09459 09397 09245 09260 0.1960

svm SVM - Linear Kernel 09343 00000 09348 09420 09349 09185 09203 02020

<Figure 12> Fault Diagnosis Training Result
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5. Model Evaluation

We measured the performance of the models by calculating
accuracy, precision, and recall. In addition to accuracy that
is most definitely used as a metric to calculate the performance
of a model, precision and recall are also important metrics
to be considered because as the number of the prediction
increases, the accuracy can be biased.

The followings are the equations for accuracy, precision,
and recall.

TP+ TN

Accuracy = N T P N )
.. TP
Precision = TPLEP %)
TP
Recall - W\[ (6)

For the Quadratic Discriminant Analysis classification algo-
rithm for the anomaly detection model showed the performance
as <Table 4>.

<Table 4> The Performance of Anomaly Detection

State Accuracy Precision Recall
Normal 0.8864 0.8994 0.8965
Abnormal 0.8837 0.8945 0.8945

The anomaly detection model showed that it can find abnor-

mality with 88% correctness. Despite the fact that this is

a high accuracy, we can improve the accuracy by training

more abnormal data.

The performance of the fault type detection model is shown

in <Table 5>.

{Table 5> The Performance of Fault Type Detection

Model Accuracy Precision Recall
RF 0.9810 0.9822 0.9920
ET 0.9834 0.9845 0.9986

CATB 0.9754 0.9762 0.9910

XGB 0.9491 0.9510 0.9989
DT 0.9285 0.9398 0.9622
SVM 0.9342 0.9348

We noticed that the performance of the fault type detection
model is higher than the anomaly detection model. It is because
we used more number of features for the fault type detection
model. However, since the frequency analysis takes a longer

- Hyeongki Jo - Kyu Ik Kim - Jin Suk Kim

time than the time analysis, the fault type detection model
costs higher than the anomaly detection model. Therefore,
we can conclude that using both models in order to make
them supplement to one another would yield the optimal result
for the fault diagnosis monitoring system.

6. Concluding Remarks

In this paper, we developed a fault diagnosis model for
rotating machines that are used in logistics facilities by analyz-
ing vibration data from the rotor kit that imitates a motor
in an industrial conveyor belt. As the result, we were success-
fully able to diagnose fault types of the data from the Kkit.

In logistics facilities, there are other important facilities.
We can further extend this study by applying this fault detection
algorithm to other facilities.
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