Trajectory Tracking Controller for Semiconductor Equipment Motors based on PI Observer

PI 관측기 기반 반도체 장비 모터의 궤적 추종 제어기 설계

  • Yun Seong Cho (Department of Electrical Engineering, Myongji University) ;
  • Hyeon Jun Choi (Department of Electronics Engineering, Myongji University) ;
  • Sang Min Jeon (Department of Electrical Engineering, Myongji University) ;
  • Ji Hoon Shin (Department of Electrical Engineering, Myongji University) ;
  • Jae Young Lee (Department of Electrical Engineering, Myongji University) ;
  • Bum Joo Lee (Department of Electrical Engineering, Myongji University) ;
  • Young Ik Son (Department of Electrical Engineering, Myongji University)
  • 조윤성 (명지대학교 전기공학과) ;
  • 최현준 (명지대학교 전자공학과) ;
  • 전상민 (명지대학교 전기공학과) ;
  • 신지훈 (명지대학교 전기공학과) ;
  • 이재영 (명지대학교 전기공학과) ;
  • 이범주 (명지대학교 전기공학과) ;
  • 손영익 (명지대학교 전기공학과)
  • Received : 2023.06.04
  • Accepted : 2023.06.21
  • Published : 2023.06.30

Abstract

This paper presents a robust position tracking controller for a motor used in semiconductor equipment, utilizing the motor angle measurement. Precise position control is challenging due to the presence of uncertainties in various motor applications. The proposed controller consists of a PD (Proportional-Derivative) controller and a PIO (Proportional-Integral Observer) to estimate the system's state and equivalent disturbance compensating for the uncertainties. Since the stability alternates as the observer gain increases, we have investigated it through the closedloop root locus under the system parameters change. The analysis has showed that the inertia of the motor is the main parameter that affects it, and by adjusting the control gain appropriately, the system can be rendered to be stable even when the inertia of the motor changes. The effectiveness of the proposed control algorithm is validated through computer simulations, followed by a comparison of its performance with the results of a previous study.

Keywords

Acknowledgement

이 논문은 2023년도 부처협업형 반도체전공트랙 사업을 통해 한국산업기술진흥원 (G02P18800005501) 의 지원을 받아 수행된 연구이며, 연구 수행에 도움을 주신 명지대학교 홍상진 교수님께 감사드립니다

References

  1. Y. Wang, X. Chen, X. Li, "Modified robust sliding-mode control method for wafer scanner," Adv. Mech. Eng., vol. 7, no. 3, pp. 1-9, 2015. https://doi.org/10.1177/1687814015577599
  2. H. Ding, Z. Xiong, "Motion stages for electronic packaging design and control," IEEE Robotics & Automation Magazine, vol. 13, no. 4, pp. 51-61, 2006.
  3. H. Kim, J. Yang, S. Kang, D. Choi, S. J. Hong, "RF impedance matching algorithm using phase detector," J. of the Semiconductor & Display Technology, vol. 21, no. 2, pp. 32-37, 2022.
  4. W. Wang, S. Tatic-Lucic, W. Brown, J. Iceman, S. Hyun, R. Vinci, "Precision in-package positioning with a thermal inchworm," Sens. Actuators A Phys., vol. 142, no. 1, pp. 316-321, 2008. https://doi.org/10.1016/j.sna.2007.04.049
  5. K. C. Kim, J. J. Kim, Y. M. Choi, D. G. Gweon, "Design of a hybrid controller to eliminate the force ripple in the linear motor," J. of the Semiconductor & Display Technology, vol. 7, no. 1, pp. 17-22, 2008.
  6. S. Mishra, J. Coaplen, M. Tomizuka, "Precision positioning of wafer scanners segmented iterative learning control for nonrepetitive disturbances [Applications of control]," IEEE Control Systems Magazine, vol. 27, no. 4, pp. 20-25, 2007. https://doi.org/10.1109/MCS.2007.384130
  7. Z. Z. Liu, F. L. Luo, M. A. Rahman, "Robust and precision motion control system of linear-motor direct drive for high-speed X-Y table positioning mechanism," IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1357-1363, 2005. https://doi.org/10.1109/TIE.2005.855661
  8. R. Yang, M. Wang, L. Li, Y. Zenggu, J. Jiang, "Integrated uncertainty/disturbance compensation with second-order sliding-mode observer for PMLSM-driven motion stage," IEEE Trans. Power Electron., vol. 34, no. 3, pp. 2597-2607, 2019. https://doi.org/10.1109/TPEL.2018.2845705
  9. K. Cho, J. Kim, S. B. Choi, S. Oh, "A high-precision motion control based on a periodic adaptive disturbance observer in a PMLSM," IEEE/ASME Trans. Mechatronics, vol. 20, no. 5, pp. 2158-2171, 2015. https://doi.org/10.1109/TMECH.2014.2365996
  10. Y. Liu, J. Gao, Y. Zhong, L. Zhang, " Extended state observer-based IMC-PID tracking control of PMLSM servo systems," IEEE Access, vol. 9, pp. 49036-49046, 2021. https://doi.org/10.1109/ACCESS.2021.3068747
  11. B. Ding, H. Pan, "Output feedback robust MPC with one free control move for the linear polytopic uncertain system with bounded disturbance," Automatica, vol. 50, no. 11, pp. 2929-2935, 2014. https://doi.org/10.1016/j.automatica.2014.10.021
  12. Y. Choi, K. Yang, W. K. Chung, H. R. Kim, I. H. Suh, "On the robustness and performance of disturbance observers for second-order systems," IEEE Trans. Automat. Contr., vol. 48, no. 2, pp. 315-320, 2003. https://doi.org/10.1109/TAC.2002.808491
  13. J. Back, H. Shim, "Adding robustness to nominal output-feedback controllers for uncertain nonlinear systems: a nonlinear version of disturbance observer," Automatica, vol. 44, no. 10, pp. 2528-2537, 2008. https://doi.org/10.1016/j.automatica.2008.02.024
  14. Y. Joo, G. Park, J. Back, H. Shim, "Embedding internal model in disturbance observer with robust stability," IEEE Trans. Autom. Control, vol. 61, no. 10, pp. 3128-3133, 2016. https://doi.org/10.1109/TAC.2015.2503559
  15. I. R. Fitri, J. Kim, H. Song, "High-gain disturbance observer-based robust load frequency control of power systems with multiple areas," Energies 2017, 5, 595.
  16. D. Soffker, T. J. Yu, P. C. Muller, "State estimation of dynamical systems with nonlinearities by using proportional- integral observer," Int. J. Syst. Sci., vol. 26, no. 9, pp. 1571-1582, 1995. https://doi.org/10.1080/00207729508929120
  17. W. -H. Chen, "Disturbance observer based control for nonlinear systems," IEEE/ASME Trans. Mechatronics, vol. 9, no. 4, pp. 706-710, 2004. https://doi.org/10.1109/TMECH.2004.839034
  18. Z. Ding, "Differential stability and design of reduced-order observers for non-linear systems," IET Control Theory Appl., vol. 5, no. 2, pp. 315-322, 2011. https://doi.org/10.1049/iet-cta.2009.0523
  19. J. Back, H. Shim, "Reduced-order implementation of disturbance observers for robust tracking of non-linear systems," IET Control Theory Appl., vol. 8, no. 17, pp. 1940-1948, 2014. https://doi.org/10.1049/iet-cta.2013.1036
  20. C. W. Lee, Y. I. Son, "Design of model-based low-order disturbance observer to estimate a sinusoidal disturbance with unknown constant offset," KIEE Trans., vol. 65, no. 4, pp. 652-658, 2016. https://doi.org/10.5370/KIEE.2016.65.4.652
  21. K. Kim, K. Rew, "Reduced order disturbance observer for discrete-time linear systems," Automatica, vol. 49, no. 4, pp. 968-975, 2013. https://doi.org/10.1016/j.automatica.2013.01.014
  22. W. -H. Chen, J. Yang, L. Guo, S. Li, "Disturbanceob-server-based control and related methods-an overview," IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1083-1095, 2016. https://doi.org/10.1109/TIE.2015.2478397
  23. S. M. Lee, I. H. Kim, Y. I. Son, "Design of a robust position tracking controller for flexible joint manipulator using motor angle," KIEE Trans., vol. 63, no. 9, pp. 1245-1247, 2014. https://doi.org/10.5370/KIEE.2014.63.9.1245
  24. M.W. Spong and M. Vidyasagar, Robot Dynamics and Control. Wiley, 1989.
  25. S. E. Talole, J. P. Kolhe, S. B. Phadke, "Extended-state-observer-based control of flexible-joint system with experimental validation," IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1411-1419, 2010. https://doi.org/10.1109/TIE.2009.2029528