DOI QR코드

DOI QR Code

Applications of Self-assembled Monolayer Technologies in MEMS Fabrication

MEMS 공정에서의 자기 조립 단분자층 기술 응용

  • Woo-Jin Lee (Department of Materials Science and Engineering, Seoul National University) ;
  • Seung-Min Lee (Department of Materials Science and Engineering, Seoul National University) ;
  • Seung-Kyun Kang (Department of Materials Science and Engineering, Seoul National University)
  • 이우진 (서울대학교 재료공학부) ;
  • 이승민 (서울대학교 재료공학부) ;
  • 강승균 (서울대학교 재료공학부)
  • Received : 2023.06.08
  • Accepted : 2023.06.15
  • Published : 2023.06.30

Abstract

The process of microelectromechanical system (MEMS) fabrication involves surface treatment to impart functionality to the device. Such surface treatment method is the self-assembled monolayer (SAM) technique, which modifies and functionalizes the surface of MEMS components with organic molecule monolayer, possessing a precisely controllable strength that depends on immersion time and solution concentration. These monolayers spontaneously adsorb on polymeric substrates or metal/ceramic components offering high precision at the nanoscale and modifying surface properties. SAM technology has been utilized in various fields, such as tribological property control, mass-production lithography, and ultrasensitive organic/biomolecular sensor applications. This paper provides an overview of the development and application of SAM technology in various fields.

마이크로 전자기계 시스템 공정에서 표면 처리는 공정 방법의 일환이자 디바이스에 자체적인 기능을 부여하는 역할을 한다. 특히 자기 조립 단분자층은 마이크로 전자기계 시스템 공정에서 표면 개질 및 기능화를 수행하는 표면처리 방법으로 침지 시간과 용액 농도에 따라 강도를 정밀하게 조절할 수 있는 유기 단분자막이다. 고분자 기판이나 금속/세라믹 부품에 자발적으로 흡착되어 형성되는 자기 조립 단분자층은 표면 특성의 개질 뿐만 아니라 나노스케일 단위의 높은 정밀도로 하여금 양산용 리소그래피 기술 및 초민감 유기/생체분자 센서에도 응용되고 있다. 본 논문에서는 마찰 특성의 조절부터 생체 분자의 탐침 기능까지 자기 조립 단분자층 기술이 발전되어 응용되고 있는 다양한 분야들에 대해 소개한다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 및 한국연구재단의 집단연구지원사업 연구비지원('2021R1A4A1052035', 이종소재부품의 멀티스케일 계면 신뢰성 분석 및 향상 연구, '2022M3I7A4072293', PIM 이종집적 패키지의 열기계 동적 특성 평가 인프라 구축)에 의해 수행되었습니다).

References

  1. A. Ulman, "Formation and structure of self-assembled monolayers", Chem. Rev., 96(4), 1533-1554 (1996) https://doi.org/10.1021/cr9502357
  2. F. Schreiber, "Structure and growth of self-assembling monolayers", Progress in Surface Science, 65(5-8), 151-257 (2000) https://doi.org/10.1016/S0079-6816(00)00024-1
  3. D. K. Schwartz, "Mechanisms and kinetics of self-assembled monolayer formation", Annual Review of Physical Chemistry, 52, 107-137 (2001) https://doi.org/10.1146/annurev.physchem.52.1.107
  4. W. C. Bigelow, D. L. Pickett, and W. A. Zisman, "Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids", Journal of Colloid Science, 1(6), 513-538 (1946) https://doi.org/10.1016/0095-8522(46)90059-1
  5. C. D. Bain and G. M. Whitesides, "Modeling organic surfaces with self-assembled monolayers", Angewandte Chemie, 101(4), 522-528 (1989) https://doi.org/10.1002/ange.19891010446
  6. C. E. D. Chidsey, and Dominic N. Loiacono, "Chemical functionality in self-assembled monolayers: structural and electrochemical properties", Langmuir, 6(3), 682-691 (1990) https://doi.org/10.1021/la00093a026
  7. D. Mobius, "Designed monolayer assemblies", Berichte der Bunsengesellschaft fur physikalische Chemie, 82(9), 848-858 (1978) https://doi.org/10.1002/bbpc.19780820903
  8. H. Haidara and S. Noirot, "In situ study of simultaneous adsorption of surfactant at model solid-liquid and liquid-liquid interfaces using the two-liquid contact angle method", The Journal of Adhesion, 57(1-4), 191-202 (1996) https://doi.org/10.1080/00218469608013652
  9. E. P. Enriquez, "Nano-Engineering of Molecular Films by Self-Assembly and Langmuir-Blodgett Techniques", Kimika, 14(1), 1-9 (1998)
  10. C. N. Sayre and D. M. Collard, "Electrooxidative deposition of polypyrrole and polyaniline on self-assembled monolayer modified electrodes", Langmuir, 13(4), 714-722 (1997) https://doi.org/10.1021/la960420v
  11. J.-N. Chazalviel and P. Allongue, "On the origin of the efficient nanoparticle mediated electron transfer across a self-assembled monolayer", Journal of the American Chemical Society, 133(4), 762-764 (2011) https://doi.org/10.1021/ja109295x
  12. P. T. Hammond and G. M. Whitesides, "Formation of polymer microstructures by selective deposition of polyion multilayers using patterned self-assembled monolayers as a template", Macromolecules, 28(22), 7569-7571 (1995) https://doi.org/10.1021/ma00126a040
  13. S. Kidambi, C. Chan, and I. Lee, "Selective depositions on polyelectrolyte multilayers: Self-assembled monolayers of mdPEG acid as molecular template", Journal of the American Chemical Society, 126(14), 4697-4703 (2004) https://doi.org/10.1021/ja039359o
  14. H. Cheng, and Y. Hu, "Influence of chain ordering on frictional properties of self-assembled monolayers (SAMs) in nano-lubrication", Advances in colloid and interface science, 171, 53-65 (2012) https://doi.org/10.1016/j.cis.2012.01.003
  15. M. Akbulut, A. R. G. Alig, and J. Israelachvili, "Triboelectrification between smooth metal surfaces coated with self-assembled monolayers (SAMs)", The Journal of Physical Chemistry B, 110(44), 22271-22278 (2006) https://doi.org/10.1021/jp063161j
  16. S.-L. Ren, S.-R. Yang, J.-Q. Wang, W.-M. Liu, and Y.-P. Zhao, "Preparation and tribological studies of stearic acid self-assembled monolayers on polymer-coated silicon surface", Chemistry of materials, 16(3), 428-434 (2004) https://doi.org/10.1021/cm0345669
  17. S. Watson, M. Nie, L. Wang, and K. Stokes, "Challenges and developments of self-assembled monolayers and polymer brushes as a green lubrication solution for tribological applications", RSC Advances, 5(109), 89698-89730 (2015) https://doi.org/10.1039/C5RA17468F
  18. I. Luzinov, D. Julthongpiput, A. L.-Vinson, T. Cregger, M. D. Foster, and V. V. Tsukruk, "Epoxy-terminated self-assembled monolayers: molecular glues for polymer layers", Langmuir, 16(2), 504-516 (2000) https://doi.org/10.1021/la990500+
  19. K. D. Schierbaum, T. Weiss, E. U. van Veizen, J. F. Engbersen, D. N. Reinhoudt, and W. Gopel, "Molecular recognition by self-assembled monolayers of cavitand receptors", Science, 265(5177), 1413-1415 (1994) https://doi.org/10.1126/science.265.5177.1413
  20. C. Boozer, J. Ladd, S. Chen, Q. Yu, J. Homola, and S. Jiang, "DNA directed protein immobilization on mixed ssDNA/oligo (ethylene glycol) self-assembled monolayers for sensitive biosensors", Analytical chemistry, 76(23), 6967-6972 (2004) https://doi.org/10.1021/ac048908l
  21. N. A. S. Omar, Y. W. Fen, J. Abdullah, Y. M. Kamil, W. M. E. M. M. Daniyal, A. R. Sadrolhosseini, and M. A. Mahdi, "Sensitive detection of dengue virus type 2 E-proteins signals using self-assembled monolayers/reduced graphene oxide-PAMAM dendrimer thin film-SPR optical sensor", Scientific Reports, 10(1), 2374 (2020)
  22. X. Jiang, and S. F. Bent, "Area-selective ALD with soft lithographic methods: using self-assembled monolayers to direct film deposition", The Journal of Physical Chemistry C, 113(41), 17613-17625 (2009) https://doi.org/10.1021/jp905317n
  23. E. Farm, M. Vehkamaki, M. Ritala, and M. Leskela, "Passivation of copper surfaces for selective-area ALD using a thiol self-assembled monolayer", Semiconductor Science and Technology, 27(7), 074004 (2012)
  24. N. Phung, M. Verheijen, A. Todinova, K. Datta, M. Verhage, A. A.-Ashouri, H. Kobler, X. Li, A. Abate, S. Albrecht, and M. Creatore, "Enhanced Self-Assembled Monolayer Surface Coverage by ALD NiO in pin Perovskite Solar Cells", ACS Applied Materials & Interfaces, 14(1), 2166-2176 (2021)
  25. C. Nicosia, and J. Huskens, "Reactive self-assembled monolayers: from surface functionalization to gradient formation", Materials horizons, 1(1), 32-45 (2014) https://doi.org/10.1039/C3MH00046J
  26. J. J. Gooding, "Advances in interfacial design for electrochemical biosensors and sensors: aryl diazonium salts for modifying carbon and metal electrodes", Electroanalysis: An International Journal Devoted to Electroanalysis, Sensors and Bioelectronic Devices, 20(6), 573-582 (2008) https://doi.org/10.1002/elan.200704124
  27. D. K. Aswal, S. Lenfant, D. Guerin, J. V. Yakhmi, and D. Vuillaume, "Self assembled monolayers on silicon for molecular electronics", Analytica Chimica Acta, 568(1-2), 84-108 (2006) https://doi.org/10.1016/j.aca.2005.10.027
  28. Y. Horii, M. Ikawa, K. Sakaguchi, M. Chikamatsu, Y. Yoshida, R. Azumi, H. Mogi, M. Kitagawa, H. Konishi, and K. Yase, "Investigation of self-assembled monolayer treatment on SiO2 gate insulator of poly (3-hexylthiophene) thinfilm transistors", Thin Solid Films, 518(2), 642-646 (2009) https://doi.org/10.1016/j.tsf.2009.07.060
  29. S. Ramadan, Y. Zhang, D. K. H. Tsang, O. Shaforost, L. Xu, R. Bower, I. E. Dunlop, P. K. Petrov, and N. Klein, "Enhancing structural properties and performance of graphene-based devices using self-assembled HMDS monolayers", ACS omega, 6(7), 4767-4775 (2021) https://doi.org/10.1021/acsomega.0c05631
  30. S. T. Patton, K. C. Eapen, J. S. Zabinski, J. H. Sanders, and A. A. Voevodin, "Lubrication of microelectromechanical systems radio frequency switch contacts using self-assembled monolayers", Journal of Applied Physics, 102(2), 024903 (2007)
  31. J. Pu, Y. Mo, S. Wan, and L. Wang, "Fabrication of novel graphene-fullerene hybrid lubricating films based on self-assembly for MEMS applications", Chemical Communications, 50(4), 469-471 (2014) https://doi.org/10.1039/C3CC47486K
  32. S. A. Henck, "Lubrication of digital micromirrordevicesTM", Tribology Letters, 3(3), 239-247 (1997) https://doi.org/10.1023/A:1019129021492
  33. Sung, I-H. and D-E. Kim. "Surface damage characteristics of self-assembled monolayers of alkanethiols on metal surfaces", Tribology Letters, 17, 835-844 (2004) https://doi.org/10.1007/s11249-004-8091-z
  34. C. S. Tan, D. F. Lim, S. G. Singh, S. K. Goulet, and M. Bergkvist, "Cu-Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol", Applied Physics Letters, 95(19), 192108 (2009)
  35. D. F. Lim, S. K. Goulet, M. Bergkvist, J. Wei, K. C. Leong, and C. S. Tan, "Enhancing Cu-Cu diffusion bonding at low temperature via application of self-assembled monolayer passivation", Journal of the Electrochemical Society, 158(10), H1057 (2011)
  36. M. D. Losego, M. E. Grady, N. R. Sottos, D. G. Cahill, and P. V. Braun, "Effects of chemical bonding on heat transport across interfaces", Nature Materials, 11, 502-506 (2012) https://doi.org/10.1038/nmat3303
  37. S. Park, J. Jang, H. Kim, D. I. Park, K. Kim, and H. J. Yoon, "Thermal conductance in single molecules and self-assembled monolayers: Physicochemical insights, progress, and challenges", Journal of Materials Chemistry A, 8(38), 19746- 19767 (2020) https://doi.org/10.1039/D0TA07095E
  38. K. Zheng, F. Sun, J. Zhu, Y. Ma, X. Li, D. Tang, F. Wang, and X. Wang, "Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer", ACS Nano, 10(8), 7792-7798 (2016) https://doi.org/10.1021/acsnano.6b03381
  39. K. Fujimaru, T. Ono, R. Nagai, and H. Matsumura, "Nanometer pattern-mask fabricated by conventional photolithography", Japanese Journal of Applied Physics, 36(12S), 7786 (1997)
  40. T. Schmaltz, G. Sforazzini, T. Reichert, and H. Frauenrath, "Self-assembled monolayers as patterning tool for organic electronic devices", Advanced Materials, 29(18), 1605286 (2017)
  41. R. J. Hofmann, M. Vlatkovic, and F. Wiesbrock, "Fifty years of hydrosilylation in polymer science: A review of current trends of low-cost transition-metal and metal-free catalysts, non-thermally triggered hydrosilylation reactions, and industrial applications", Polymers, 9(10), 534 (2017)
  42. R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, ""Dip-Pen" Nanolithography", Science, 283(5402), 661-663 (1999) https://doi.org/10.1126/science.283.5402.661
  43. S. Hong, J. Zhu, and C. A. Mirkin. "Multiple ink nanolithography: toward a multiple-pen nano-plotter", Science, 286(5439), 523-525 (1999) https://doi.org/10.1126/science.286.5439.523
  44. S. Flink, F. C. J. M. van Veggel, and D. N. Reinhoudt, "Sensor functionalities in self-assembled monolayers", Advanced Materials, 12(18), 1315-1328 (2000) https://doi.org/10.1002/1521-4095(200009)12:18<1315::AID-ADMA1315>3.0.CO;2-K
  45. D. Samanta and A. Sarkar, "Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications", Chemical Society Reviews, 40(5), 2567-2592 (2011) https://doi.org/10.1039/c0cs00056f
  46. D. Mandler and S. Kraus-Ophir, "Self-assembled monolayers (SAMs) for electrochemical sensing", Journal of Solid State Electrochemistry, 15, 1535-1558 (2011) https://doi.org/10.1007/s10008-011-1493-6
  47. L. Basabe-Desmonts, J. Beld, R. S. Zimmerman, J. Hernando, P. Mela, M. F. G. Parajo, N. F. van Hulst, A. van den Berg, D. N. Reinhoudt, and M. Crego-Calama, "A simple approach to sensor discovery and fabrication on self-assembled monolayers on glass", Journal of the American Chemical Society, 126(23), 7293-7299 (2004) https://doi.org/10.1021/ja049901o
  48. M. Li, K. Xie, G. Wang, J. Zheng, Y. Cao, F. Wei, H. Tu, and J. Tang, "A formaldehyde sensor based on self-assembled monolayers of oxidized thiophene derivatives", Langmuir, 37(19), 5916-5922 (2021) https://doi.org/10.1021/acs.langmuir.1c00396
  49. W.-I. Lee, A. Subramanian, S. Mueller, K. Levon, C.-Y. Nam, and M. H. Rafailovich, "Potentiometric Biosensors Based on Molecular-Imprinted Self-Assembled Monolayer Films for Rapid Detection of Influenza A Virus and SARS-CoV-2 Spike Protein", ACS Applied Nano Materials, 5(4), 5045-5055 (2022) https://doi.org/10.1021/acsanm.2c00068
  50. F. Schreiber, "Self-assembled monolayers: from 'simple' model systems to biofunctionalized interfaces", Journal of Physics: Condensed Matter, 16(28), R881 (2004)
  51. S. D. Kelly, K. M. Kemner, G. E. Fryxell, J. Liu, S. V. Mattigod, and K. F. Ferris, "X-ray-absorption fine-structure spectroscopy study of the interactions between contaminant tetrahedral anions and self-assembled monolayers on mesoporous supports", The Journal of Physical Chemistry B, 105(27), 6337-6346 (2001) https://doi.org/10.1021/jp0045890
  52. E. Jeoung, J. B. Carroll, and V. M. Rotello, "Surface modification via 'lock and key' specific self-assembly of polyhedral oligomeric silsequioxane (POSS) derivatives to modified gold surfaces", Chemical Communications, 14, 1510-1511 (2002)