DOI QR코드

DOI QR Code

A Study on Contact Resistance Properties of Metal/CVD Graphene

화학기상증착법을 이용하여 합성한 그래핀과 금속의 접촉저항 특성 연구

  • Dong Yeong Kim (School of Chemical Engineering, Chonnam National University) ;
  • Haneul Jeong (School of Chemical Engineering, Chonnam National University) ;
  • Sang Hyun Lee (School of Chemical Engineering, Chonnam National University)
  • 김동영 (전남대학교 화학공학부) ;
  • 정하늘 (전남대학교 화학공학부) ;
  • 이상현 (전남대학교 화학공학부)
  • Received : 2023.06.21
  • Accepted : 2023.06.30
  • Published : 2023.06.30

Abstract

In this study, the electrical contact resistance characteristics between graphene and metals, which is one of important factors for the performance of graphene-based devices, were compared. High-quality graphene was synthesized by chemical vapor deposition (CVD) method, and Al, Cu, Ni, and Ti as electrode materials were deposited on the graphene surface with equal thickness of 50 nm. The contact resistances of graphene transferred to SiO2/Si substrates and metals were measured by the transfer length method (TLM), and the average contact resistances of Al, Cu, Ni, and Ti were found to be 345 Ω, 553 Ω, 110 Ω, and 174 Ω, respectively. It was found that Ni and Ti, which form chemical bonds with graphene, have relatively lower contact resistances compared to Al and Cu, which have physical adsorption properties. The results of this study on the electrical properties between graphene and metals are expected to contribute to the realization of high-performance graphene-based devices including electronics, optoelectronic devices, and sensors by forming low contact resistance with electrodes.

본 연구에서는 그래핀 기반 소자의 성능에 영향을 미치는 그래핀과 금속 사이의 전기적 접촉저항 특성을 비교 분석하였다. 화학기상증착법을 이용하여 고품질의 그래핀을 합성하였으며, 전극 물질로 Al, Cu, Ni 및 Ti를 동일한 두께로 그래핀 표면 위에 증착하였다. TLM (transfer length method) 방법을 통해 SiO2/Si 기판에 전사된 그래핀과 금속의 접촉저항을 측정한 결과, Al, Cu, Ni, Ti의 평균 접촉저항은 각각 345 Ω, 553 Ω, 110 Ω, 174 Ω으로 측정되었다. 그래핀과 물리적 흡착 특성을 갖는 Al와 Cu에 비해 화학적 결합을 형성하는 Ni과 Ti의 경우, 상대적으로 더 낮은 접촉저항을 갖는 것을 확인하였다. 본 연구의 그래핀과 금속의 전기적 특성에 대한 연구 결과는 전극과의 낮은 접촉저항 형성을 통해 고성능 그래핀 기반 전자, 광전자소자 및 센서 등의 구현에 기여할 수 있을 것으로 기대한다.

Keywords

Acknowledgement

본 연구는 전남대학교 학술연구비 지원에 의하여 연구되었음.

References

  1. A. K. Geim and K. S. Novoselov, "The rise of graphene", Nat. Mater., 6, 183-191 (2007).  https://doi.org/10.1038/nmat1849
  2. C. Soldano, A. Mahmood, and E. Dujardin, "Production, properties and potential of graphene", Carbon, 48(8), 2127-2150 (2010).  https://doi.org/10.1016/j.carbon.2010.01.058
  3. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, "Graphene and Graphene Oxide: Synthesis, Properties, and Applications", Adv. Mater., 22(35), 3906-3924 (2010).  https://doi.org/10.1002/adma.201001068
  4. Y. M. Lin, K. A. JenKins, A. V. G arcia, J. P. Small, D. B. Farmer, and P. Avouris, "Operation of graphene transistors at gigahertz frequencies", Nano Lett., 9(1), 422-426 (2009).  https://doi.org/10.1021/nl803316h
  5. T. H. Han, H. B. Kim, S. J. Kwon, and T. W. Lee, "Graphene-based flexible electronic devices", Mater. Sci. Eng. R Rep., 118, 1-43 (2017).  https://doi.org/10.1016/j.mser.2017.05.001
  6. W. Yuan and G. Shi, "Graphene-based gas sensors", J. Mater. Chem. A., 1, 10078-10091 (2013).  https://doi.org/10.1039/c3ta11774j
  7. K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, "Contact resistivity and current flow path at metal/graphene contact", Appl. Phys. Lett., 97, 143514 (2010). 
  8. A. Venugopal, L. Colombo, and E. M. Vogel, "Contact resistance in few and multilayer graphene devices". Appl. Phys. Lett., 96, 013512 (2010). 
  9. E. Watanabe, A. Conwill, D. Tsuya, and Y. Koide, "Low contact resistance metals for graphene based devices", Diam. Relat. Mater., 24, 171-174 (2012).  https://doi.org/10.1016/j.diamond.2012.01.019
  10. T. Cusati, G. Fiori, A. Gahoi, V. Passi, M. C. Lemme, A. Fortunelli, and G. Iannaccone, "Electrical properties of graphene-metal contacts", Sci. Rep., 7, 5109 (2017). 
  11. F. Xia, V. Perebeinos, Y. M. Lin, Y. Wu, and P. Avouris, "The origins and limits of metal-graphene junction resistance", Nat. Nanotechnol., 6, 179-184 (2011).  https://doi.org/10.1038/nnano.2011.6
  12. Y. Zheng, J. Gao, C. Han, and W. Chen, "Ohmic Contact Engineering for Two-Dimensional Materials", Cell Rep. Phys. Sci., 2(1), 100298 (2021). 
  13. A. Allain, J. Kang, K. Banerjee, and A. Kis, "Electrical contacts to two-dimensional semiconductors", Nat. Mater., 14, 1195-1205 (2015).  https://doi.org/10.1038/nmat4452
  14. H. Liu, H. Kondo, and T. Ohno, "Contact effects of nickel and copper on electron transport through graphene", Phys. Rev. B., 86(15), 155434 (2012). 
  15. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nat. Nanotech. 5, 574-578 (2010).  https://doi.org/10.1038/nnano.2010.132
  16. N. Stavitski, J. H. Klootwijk, H. W. Zeijl, A. Y. Kovalgin, and R. A. M. Wolters, "Cross-Bridge Kelvin Resistor Structures for Reliable Measurement of Low Contact Resistances and Contact Interface Characterization", IEEE Trans. Semicond. Manuf., 22(1), 146-152 (2009).  https://doi.org/10.1109/TSM.2008.2010746
  17. M. C. Prado, D. Jariwala, T. J. Marks, and M. C. Hersam, "Optimization of graphene dry etching conditions via combined microscopic and spectroscopic analysis", Appl. Phys. Lett., 102, 193111 (2013). 
  18. B. Li, C. Y. Han, P. T. Lai, and W. M. Tang, "Effects of source/drain-electrode material, thickness and fabrication method on the electrical performance of pentacene thin-film transistor", Thin Solid Films, 667, 28-33 (2018).  https://doi.org/10.1016/j.tsf.2018.10.004
  19. C. Gong, G. Lee, B. Shan, E. M. Vogel, R. M. Wallace, and K. Cho, "First-principles study of metal-graphene interfaces", J. Appl. Phys., 108(12), 123711 (2010). 
  20. A. Venugopal, J. Chan, X. Li, C. W. Magnuson, W. P. Kirk, L. Colombo, R. S. Ruoff, and E. M. Vogel, "Effective mobility of single-layer graphene transistors as a function of channel dimensions", J. Appl. Phys., 109(10), 104511 (2011).