DOI QR코드

DOI QR Code

Optimal sensor placement of retrofitted concrete slabs with nanoparticle strips using novel DECOMAC approach

  • Ali Faghfouri (Institute of Environmental Sciences, Universite du Quebec a Montreal) ;
  • Hamidreza Vosoughifar (Department of Civil and Environmental Engineering and Water Resources Research Center, University of Hawaii at Manoa) ;
  • Seyedehzeinab Hosseininejad (Department of Civil Engineering, Islamic Azad University)
  • Received : 2022.04.10
  • Accepted : 2023.05.01
  • Published : 2023.06.25

Abstract

Nanoparticle strips (NPS) are widely used as external reinforcers for two-way reinforced concrete slabs. However, the Structural Health Monitoring (SHM) of these slabs is a very important issue and was evaluated in this study. This study has been done analytically and numerically to optimize the placement of sensors. The properties of slabs and carbon nanotubes as composite sheets were considered isotopic and orthotropic, respectively. The nonlinear Finite Element Method (FEM) approach and suitable optimal placement of sensor approach were developed as a new MATLAB toolbox called DECOMAC by the authors of this paper. The Suitable multi-objective function was considered in optimized processes based on distributed ECOMAC method. Some common concrete slabs in construction with different aspect ratios were considered as case studies. The dimension and distance of nano strips in retrofitting process were selected according to building codes. The results of Optimal Sensor Placement (OSP) by DECOMAC algorithm on un-retrofitted and retrofitted slabs were compared. The statistical analysis according to the Mann-Whitney criteria shows that there is a significant difference between them (mean P-value = 0.61).

Keywords

References

  1. ACI 318 (2014), Building Code Requirements for Reinforced Concrete and Commentary, American Concrete Institute, ACI Committee 318; Farmington Hills, IL, USA, 348.
  2. Afefy, H.M., Baraghith, A.T and Mahmoud, M.H. (2019), "Retrofitting of defected reinforced-concrete cantilever slabs using different techniques", Mag. Concr. Res., 72(14), 703-719. https://doi.org/10.1680/jmacr.18.00340
  3. Bekas, D., Grammatikos, S.A., Kouimtzi, C. and Paipetis, A.S. (2015), "Linear and non-linear electrical dependency of carbon nanotube reinforced composites to internal damage", IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/74/1/012002
  4. Coppolino, R.N. and Rubin, S. (1980), "Detectability of structural failures in offshore platforms by ambient vibration monitoring", Proceedings of the 12th Annual Offshore Technology Conference, pp. 101-110.
  5. Ercan, T. and Papadimitriou, C. (2021), "Optimal sensor placement for reliable virtual sensing using modal expansion and information theory", Sensors, 21(10), 3400. https://doi.org/10.3390/s21103400
  6. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  7. Fernandes, H., Lucio, V. and Ramos, A. (2017), "Strengthening of RC slabs with reinforced concrete overlay on the tensile face", Eng. Struct., 132, 540-550. https://doi.org/10.1016/j.engstruct.2016.10.011
  8. Firoozbakht, M., Vosoughifar, H. and Ghari Ghoran, A. (2019), "Coverage intensity of optimal sensors for common, isolated, and integrated steel structures using novel approach of FEM-MAC-TTFD", Int. J. Distrib. Sens. Netw. https://doi.org/10.1177/1550147719857568
  9. Guo, Z., Xu, Z. and Chen, C. (2017), "Behavior of GFRP retrofitted reinforced concrete slabs subjected to conventional explosive blast", Mater. Struct., 50, 236. https://doi.org/10.1617/s11527-017-1107-6
  10. Herraiz, B. and Vogel, T. (2016), "Novel design approach for the analysis of laterally unrestrained reinforced concrete slabs considering membrane action", Eng. Struct., 123, 313-329. https://doi.org/10.1016/j.engstruct.2016.05.033
  11. Hunt, D.L., Weiss, S.P., West, W.M., Dunlap, T.A. and Freemeyer, S.R. (1990), "Development and implementation of a shuttle modal inspection system", Sound Vib.
  12. Kang, I., Schulz, M.J., Kim, J.H., Shanov, V. and Shi, D. (2006), "A carbon nanotube strain sensor for structural health monitoring", Smart Mater. Struct., 15, 737. https://doi.org/10.1088/0964-1726/15/3/009
  13. Kaveh, A., Talaei, A.S. and Nasrollahi, A. (2016), "Application of Probabilistic Particle Swarm in Optimal Design of Large-Span Prestressed Concrete Slabs", Iran. J. Sci. Technol. Trans. Civil Eng., 40, 33-40. https://doi.org/10.1007/s40996-016-0005-4
  14. Kaveh, A. and Dadras Eslamlou, A. (2019), "An efficient two-stage method for optimal sensor placement using graph-theoretical partitioning and evolutionary algorithms", Struct. Health Monit., 26, e2325. https://doi.org/10.1002/stc.2325
  15. Kaveh, A., Dadras Eslamlou, A., Rahmani, P. and Amirsoleimani, P. (2022), "Optimal sensor placement in large-scale dome trusses via Q-learning-based water strider algorithm", Struct. Control Health Monit., 29(7), e2949. https://doi.org/10.1002/stc.2949
  16. Khajehdehi, R. and Panahshahi, N. (2016), "Effect of openings on in-plane structural behavior of reinforced concrete floor slabs", J. Build. Eng., 7, 1-11. https://doi.org/10.1016/j.jobe.2016.04.011
  17. Konka, H.P., Wahab, M.A. and Lian, K. (2013), "Piezoelectric fiber composite transducers for health monitoring in composite structures", Sens. Actuator A Phys., 194, 84-94. https://doi.org/10.1016/j.sna.2012.12.039
  18. Lu, S., Tian, C., Wang, X., Zhang, L., Du, K., Ma, K. and Xu, T. (2018), "Strain sensing behaviors of GnPs/epoxy sensor and health monitoring for composite materials under monotonic tensile and cyclic deformation", Compos. Sci. Technol., 158, 94-100. https://doi.org/10.1016/j.compscitech.2018.02.017
  19. Ma, C., Wang, D. and Wang, Z. (2017), "Seismic retrofitting of full-scale RC interior beam-column-slab subassemblies with CFRP wraps", Compos. Struct., 159, 397-409. https://doi.org/10.1016/j.compstruct.2016.09.094
  20. Maheri, M.R., Khajeheian, M.K. and Vatanpour, F. (2019), "Inplane seismic retrofitting of hollow concrete block masonry walls with RC layers", Structures, 20, 425-436. https://doi.org/10.1016/j.istruc.2019.05.008
  21. Mosalam, K.M. and Mosallam, A.S. (2001), "Nonlinear transient analysis of reinforced concrete slabs subjected to blast loading and retrofitted with CFRP composites", Compos. B. Eng., 32(8), 623-636. https://doi.org/10.1016/S1359-8368(01)00044-0
  22. Navarro, M., Ivorra, S. and Varona, F.B. (2018), "Parametric computational analysis for punching shear in RC slabs", Eng. Struct., 165, 254-263. https://doi.org/10.1016/j.engstruct.2018.03.035
  23. Sengezer, E. and Seidel, G. (2017), "Structural Health Monitoring of Nanocomposite Bonded Energetic Materials Through Piezoresistive Response", AIAA J., 56, 1-14. https://doi.org/10.2514/1.J056178
  24. Shokouhi, S.K. and Vosoughifar, H. (2013), "Optimal sensor placement in the lightweight steel framing structures using the novel TTFD approach subjected to near-fault earthquakes", J. Civil Struct. Health Monit., 3, 257-267. https://doi.org/10.1007/s13349-013-0053-4
  25. Tan, Y. and Zhang, L. (2020), "Computational methodologies for optimal sensor placement in structural health monitoring: A review", Struct. Health Monit., 19(4), 1287-1308. https://doi.org/10.1177/1475921719877579
  26. Tan, A.C., Cha, J.J.Y. and Kang, I. (2011), "Novel corrosion sensor based on carbon nanotube composites for structural health monitoring", Proceedings of the Thermal and Materials Nanoscience and Nanotechnology for Structural Health Monitoring, Antalya, Turkey, Begell House, pp. 1-7. http://dx.doi.org/10.1615/ICHMT.2011.TMNN-2011.70
  27. Thiagarajan, G., Kadambi, A.V., Robert, S. and Johnson, C.F. (2015), "Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads", Int. J. Impact Eng., 75, 162-173. https://doi.org/10.1016/j.ijimpeng.2014.07.018
  28. Vandiver, J.K. (1977), "Detection of structural failure on fixed platforms by measurement of dynamic response", J. Pet. Technol., 305-310. https://doi.org/10.4043/2267-MS
  29. Vosoughifar, H. and Khorani, M. (2019), "Optimal Sensor Placement of RCC Dam using Modified Approach of COMAC-TTFD", KSCE J. Civil Eng., 23, 2933-2947. https://doi.org/10.1007/s12205-019-0716-8
  30. Vosoughifar, H. and Manafi, P. (2020), "Sensor location in concrete slabs with various layout of opening using modified 'FEMS-COMAC' approach", Earthq. Eng. Eng. Vib., 19, 205-222. https://doi.org/10.1007/s11803-020-0557-y
  31. Vosoughifar, H., Shokouhi, S.K. and Farshadmanesh, P. (2012), "Optimal sensor placement of steel structure with UBF system for SHM using hybrid FEM-GA technique", Civil Structural Health Monitoring Workshop. http://creativecommons.org/licenses/by/3.0/
  32. Wang, W. (2013), "Towards structural health monitoring in carbon nanotube reinforced composites", Bachelor's Thesis; Massachusetts Institute of Technology, Department of Materials Science and Engineering.
  33. Wang, G., Wang, Y., Zhang, P., Zhai, Y., Luo, Y., Li, L. and Luo, S. (2018), "Structure dependent properties of carbon nanomaterials enabled fiber sensors for in situ monitoring of composites", Compos. Struct., 195, 36-44. https://doi.org/10.1016/j.compstruct.2018.04.052
  34. Yi, T.H., Zhou, G.D., Li, H.N. and Wang, C.W. (2016), "Optimal placement of triaxial sensors for modal identification using hierarchic wolf algorithm", Struct. Health Monit., 24(8). https://doi.org/10.1002/stc.1958