DOI QR코드

DOI QR Code

Antimicrobial and Cytotoxic Activity of Endophytic Fungi from Lagopsis supina

  • Dekui Zhang (Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University) ;
  • Weijian Sun (College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences) ;
  • Wenjie Xu (College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences) ;
  • Changbo Ji (College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences) ;
  • Yang Zhou (College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences) ;
  • Jingyi Sun (College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences) ;
  • Yutong Tian (College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences) ;
  • Yanling Li (College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences) ;
  • Fengchun Zhao (Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University) ;
  • Yuan Tian (College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences)
  • Received : 2022.11.28
  • Accepted : 2022.12.24
  • Published : 2023.04.28

Abstract

In this study, five endophytic fungi belonging to the Aspergillus and Alternaria genera were isolated from Lagopsis supina. The antimicrobial activity of all fungal fermented extracts against Staphylococcus and Fusarium graminearum was tested using the cup-plate method. Among them, Aspergillus ochraceus XZC-1 showed the best activity and was subsequently selected for large-scale fermentation and bioactivity-directed separation of the secondary metabolites. Four compounds, including 2-methoxy-6-methyl-1,4-benzoquinone (1), 3,5-dihydroxytoluene (2), oleic acid (3), and penicillic acid (4) were discovered. Here, compounds 1 and 4 displayed anti-fungal activity against F. graminearum, F. oxysporum, F. moniliforme, F. stratum, Botrytis cinerea, Magnaporthe oryzae, and Verticillium dahlia with diverse MIC values (128-512 ㎍/ml), which were close to that of the positive control antifungal, actidione (64-128 ㎍/ml). Additionally, compounds 1 and 4 also exhibited moderate antibacterial activity against S. aureus, Listeria monocytogenes, Escherichia coli, and Salmonella enterica, with low MIC values (8-64 ㎍/ml). Moreover, compounds 1 and 4 displayed selective cytotoxicity against cancer cell lines as compared with the normal fibroblast cells. Therefore, this study proposes that the endophytic fungi from L. supina can potentially produce bioactive molecules to be used as lead compounds in drugs or agricultural antibiotics.

Keywords

Acknowledgement

This work was supported by the Youth Science Foundation Program of Shandong First Medical University (202201-034), Shandong Medical and Health Science and Technology Development Project (202101060623), the National Natural Science Foundation of China (21602152) and the Student Research Training Program of Shandong First Medical University (2022104391556). We thank Bullet Edits Limited for the linguistic editing and proofreading of the manuscript.

References

  1. Selim KA, El-Beih AA, AbdEl-Rahman TM, El-Diwany AI. 2012. Biology of endophytic fungi. Curr. Res. Environ. Appl. Mycol. 2: 31-82. https://doi.org/10.5943/cream/2/1/3
  2. Tan RX, Zou WX. 2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18: 448-459. https://doi.org/10.1039/b100918o
  3. Zhao J, Shan T, Mou Y, Zhou L. 2011. Plant-derived bioactive compounds produced by endophytic fungi. Mini. Rev. Med. Chem. 11: 159-168. https://doi.org/10.2174/138955711794519492
  4. Manganyi MC, Ateba CN. 2020. Untapped potentials of endophytic fungi: a review of novel bioactive compounds with biological applications. Microorganisms 8: 1934.
  5. Martinez-Klimova E, Rodriguez-Pena K, Sanchez S. 2017. Endophytes as sources of antibiotics. Biochem. Pharmacol. 134: 1-17. https://doi.org/10.1016/j.bcp.2016.10.010
  6. Alvin A, Miller KI, Neilan BA. 2014. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol. Res. 169: 483-495. https://doi.org/10.1016/j.micres.2013.12.009
  7. Xiao J, Zhang Q, Gao YQ, Tang JJ, Zhang AL. 2014. Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their anti-fungal, antibacterial, antioxidant, and cytotoxic activities. J. Agr. Food Chem. 62: 3584-3590. https://doi.org/10.1021/jf500054f
  8. Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, et al. 2018. Endophytic fungi - alternative sources of cytotoxic compounds: a review. Front. Pharmacol. 9: 309.
  9. Li J, Chen YT. 2002. Two flavonoids from Lagopsis supina. Acta Pharm. Sin. 237: 186-188.
  10. Zhang J, Huang Z, Huo HX, Li YT. 2015. Chemical constituents from Lagopsis supina (Steph.) IK.-Gal. ex Knorr. Biochem. Syst. Ecol. 61: 424-428. https://doi.org/10.1016/j.bse.2015.07.010
  11. Li H, Li MM, Su SQ. 2014. Anti-inflammatory labdane diterpenoids from Lagopsis supina. J. Nat. Prod. 77: 1047-1053. https://doi.org/10.1021/np5001329
  12. Zhang LM, Jiang H, Liu YK, Zhang XF, Niu CY, Zhang WM. 2004. The effects of extracts from herba Lagopsis on microcirculation of acute blood stasis rats. Chin. Med. Mater. 27: 509-511. https://doi.org/10.1081/BIO-200039608
  13. Liang HF, Wang WP, Zhang YP, Du ST, Jiang H. 2008. Effect of ethanol extract from Mrrubium incisum against the myocardium injury in experimental DIC rats. Lishizhen Med. Mater. Med. Res. 19: 1650-1651.
  14. Zhang YC, Han R, Hou YL, Li BL, Niu FL, Zhao ZG, et al. 2008. Effects of ethanol extract from Mrrubium incisum on free radical injury in shock rats, Lishizhen Med. Mater. Med. Res. 19: 1909-1910.
  15. Gu H, Zhang S, Liu L, Yang Z, Zhao F, Tian Y. 2022. Antimicrobial potential of endophytic fungi from Artemisia argyi and bioactive metabolites from Diaporthe sp. AC1. Front. Microbiol. 13: 908836.
  16. Liu P, Zhang D, Shi R, Yang Z, Zhao F, Tian Y. 2019. Antimicrobial potential of endophytic fungi from Astragalus chinensis. 3 Biotech 9: 405.
  17. Visser AA, Nobre T, Currie CR, Aanen DK, Poulsen M. 2012. Exploring the potential for Actinobacteria as defensive symbionts in fungus-growing termites. Microb. Ecol. 63: 975-985. https://doi.org/10.1007/s00248-011-9987-4
  18. Zhao SS, Zhang YY, Yan Y, Cao LL, Xiao Y, Ye YH. 2017. Chaetomium globosum CDW7, a potential biological control strain and its anti-fungal metabolites. FEMS Microbiol. Lett. 364. doi: 10.1093/femsle/fnw287.
  19. Zhang YL, Li S, Jiang DH, Kong LC, Zhang PH, Xu JD. 2013. Anti-fungal activities of metabolites produced by a termite-associated Streptomyces canus BYB02. J. Agric. Food Chem. 61: 1521-1524. https://doi.org/10.1021/jf305210u
  20. Lee J, Gamage CDB, Kim GJ, Hillman PF, Lee C, Lee EY, et al. 2020. Androsamide, a cyclic tetrapeptide from a marine Nocardiopsis sp., suppresses motility of colorectal cancer cells. J. Nat. Prod. 83: 3166-3172. https://doi.org/10.1021/acs.jnatprod.0c00815
  21. Chow S, Krainz T, Bernhardt PV, Williams CM. 2019. En route to D-ring inverted phorbol esters. Org. Lett. 6: 18-55. https://doi.org/10.1021/acs.orglett.9b03379
  22. Ouyang MA, Chang C, Wei YS, Kuo YH. 2008. New phenol glycosides from the roots of Rhus javanica var. roxburghiana. J. Chin. Chem. Soci. 55: 223-227. https://doi.org/10.1002/jccs.200800033
  23. Leggio A, De Marco R, Perri F, Spinella M, Liguori A. 2012. Unusual reactivity of dimethylsulfoxonium methylide with esters. Eur. J. Org. Chem. 2012: 14-118. https://doi.org/10.1002/ejoc.201190106
  24. Kimura Y, Nakahara S, Fujioka S. 1996. Aspyrone, a nematicidal compound isolated from the fungus, Aspergillus melleus. Biosci. Biotechnol. Biochem. 60: 1375-1376. https://doi.org/10.1271/bbb.60.1375
  25. Yang L, He J. 2020. Lagopsis supina extract and its fractions exert prophylactic effects against blood stasis in rats via anti-coagulation, anti-platelet activation and anti-fibrinolysis and chemical characterization by UHPLC-qTOF-MS/MS. Biomed. Pharmacother. 132: 110899.
  26. Ab Rahman SFS, Singh E, Pieterse CM, Schenk PM. 2018. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 267: 102-111. https://doi.org/10.1016/j.plantsci.2017.11.012
  27. Petchiappan A, Chatterji D. 2017. Antibiotic resistance: current perspectives. ACS Omega 2: 7400-7409. https://doi.org/10.1021/acsomega.7b01368
  28. Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, et al. 2010. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol. Res. 165: 437-449. https://doi.org/10.1016/j.micres.2009.11.009
  29. Deshmukh SK, Gupta MK, Prakash V, Saxena S. 2018. Endophytic fungi: A source of potential antifungal compounds. J. Fungi 4: 77.
  30. Frank M, Ozkaya FC, Muller WE, Hamacher A, Kassack MU, Lin W, et al. 2019. Cryptic secondary metabolites from the sponge-associated fungus Aspergillus ochraceus. Mar. Drugs 17: 99.
  31. Hareeri RH, Aldurdunji MM, Abdallah HM, Alqarni AA, Mohamed SGA, Mohamed GA, et al. 2022. Aspergillus ochraceus: Metabolites, bioactivities, biosynthesis, and biotechnological potential. Molecules 27: 6759.
  32. Liu Y, Li XM, Meng LH, Wang BG. 2015. Polyketides from the marine mangrove-derived fungus Aspergillus ochraceus MA-15 and their activity against aquatic pathogenic bacteria. Phytochem. Lett. 12: 232-236. https://doi.org/10.1016/j.phytol.2015.04.009
  33. Cui CM, Li XM, Meng L, Li CS, Huang CG. 2010. 7-Nor-ergosterolide, a pentalactone-containing norsteroid and related seroids from the marine-derived endophytic Aspergillus ochraceus EN-31. J. Nat. Prod. 73: 1780-1784. https://doi.org/10.1021/np100386q
  34. Tan Y, Yang B, Lin X, Luo X, Pang X, Tang L, et al. 2018. Nitrobenzoyl sesquiterpenoids with cytotoxic activities from a marine-derived Aspergillus ochraceus fungus. J. Nat. Prod. 81: 92-97. https://doi.org/10.1021/acs.jnatprod.7b00698
  35. Weller M G. 2012. A unifying review of bioassay-guided fractionation, effect-directed analysis and related techniques. Sensors 12: 9181-9209. https://doi.org/10.3390/s120709181
  36. Kang SW, Kim SW. 2004. New anti-fungal activity of penicillic acid against Phytophthora species. Biotechnol. Lett. 26: 695-698. https://doi.org/10.1023/B:BILE.0000024090.96693.a4
  37. Nguyen HT, Yu NH, Jeon SJ, Lee HW, Bae CH, Yeo JH, et al. 2016. Antibacterial activities of penicillic acid isolated from Aspergillus persii against various plant pathogenic bacteria. Lett. Appl. Microbiol. 62: 488-493. https://doi.org/10.1111/lam.12578
  38. Bray F, Laversanne M, Weiderpass E, Soerjomataram I. 2021. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127: 3029-3030. https://doi.org/10.1002/cncr.33587
  39. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Pineros M, Znaor A, et al. 2021. Cancer statistics for the year 2020: an overview. Int. J. Cancer 149: 778-789. https://doi.org/10.1002/ijc.33588
  40. Hridoy M, Gorapi MZH, Noor S, Chowdhury NS, Rahman MM, Muscari I, et al. 2022. Putative anticancer compounds from plant-derived endophytic fungi: a review. Molecules 27: 296.
  41. Grabsch C, Wichmann G, Loffhagen N, Herbarth O, Muller A. 2006. Cytotoxicity assessment of gliotoxin and penicillic acid in Tetrahymena pyriformis. Environ. Toxicol. 21: 111-117. https://doi.org/10.1002/tox.20162
  42. Wu MD, Cheng MJ, Chen YL, Chang HH, Kuo YH, Lin CC, et al. 2019. Chemical constituents from the fungus Antrodia cinnamomea. Nat. Prod. Comm. 14: 129-130. https://doi.org/10.1177/1934578X1901400134